Skip to main content
Log in

Behavior and Mechanism of Indium Extraction from Waste Liquid-Crystal Display Panels by Microwave-Assisted Chlorination Metallurgy

  • Adaptive Metallurgical Processing Technologies for Strategic Metal Recycling
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Using ammonium chloride as a chlorination agent, indium in waste liquid-crystal display panels was successfully extracted by microwave-assisted chloride metallurgy under vacuum pressure. The optimal conditions for indium extraction from pure indium oxide were explored through single-factor and orthogonal experiments, achieving an indium extraction ratio of 98.91% when the temperature was 500°C, the Cl/In molar ratio was 8, and the heating duration was 3 min for pure In2O3. The Cl/In molar ratio exhibited the most important effect on the indium extraction ratio, followed by the heating temperature and duration. When extracting indium from waste liquid-crystal display panel powder (–13 µm) after ball milling, the indium extraction ratio was nearly 79.46% when using an ammonium chloride mass ratio of 0.6 wt.%, temperature of 500°C, and heating duration of 3 min. Excess gaseous hydrogen chloride reacts with ammonia to form ammonium chloride during the condensation, thereby avoiding emission of hydrogen chloride into the environment. The results of this work indicate that this technology represents a promising option for the extraction of indium from waste liquid-crystal display panels with a very short heating duration and relatively low chlorination agent loss, as well as no harmful gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LCD:

Liquid-crystal display

ITO:

Indium tin oxide

∆G :

Gibbs free energy

∆H :

Enthalpy

∆S :

Entropy

T :

Absolute temperature

Q :

Reaction entropy

k :

Reaction rate constant

A :

Frequency factor

Ea :

Activation energy

R :

Ideal gas constant

References

  1. S.-W. Hung, J.-M. Tsai, M.-J. Cheng, and P.-C. Chen, Technol. Soc. 34, 9. (2012).

    Article  Google Scholar 

  2. L. Zhang, B. Wu, Y. Chen, and Z. Xu, J. Clean. Prod. 162, 1472. (2017).

    Article  Google Scholar 

  3. A. Amato, and F. Beolchini, J. Environ. Manage. 225, 1. (2018).

    Article  Google Scholar 

  4. A.M. Rashad, Constr. Build. Mater. 93, 1236. (2015).

    Article  Google Scholar 

  5. K. Kim, and K. Kim, J. Clean. Prod. 227, 199. (2019).

    Article  Google Scholar 

  6. K. Grant, F.C. Goldizen, P.D. Sly, M.-N. Brune, M. Neira, M. Van Den Berg, and R.E. Norman, Lancet Glob Health 1, e350. (2013).

    Article  Google Scholar 

  7. L. Ciacci, T.T. Werner, I. Vassura, and F. Passarini, J. Ind. Ecol. 23, 426. (2019).

    Article  Google Scholar 

  8. A. Akcil, I. Agcasulu, and B. Swain, Resour. Conserv. Recy. 149, 622. (2019).

    Article  Google Scholar 

  9. K.-L. Lin, W.-K. Chang, T.-C. Chang, C.-H. Lee, and C.-H. Lin, J. Clean. Prod. 17, 1499. (2009).

    Article  Google Scholar 

  10. K. Huang, J. Guo, and Z. Xu, J. Hazard. Mater. 164, 399. (2009).

    Article  Google Scholar 

  11. I. Birloaga, I. De Michelis, F. Ferella, M. Buzatu, and F. Vegliò, Waste Manag. 33, 935. (2013).

    Article  Google Scholar 

  12. I.H. Kuong, J. Li, J. Zhang, and X. Zeng, Environ. Sci. Technol. 53, 1394. (2019).

    Article  Google Scholar 

  13. Y. Li, N. Zhu, X. Wei, J. Cui, P. Wu, P. Li, J. Wu, and Y. Lin, Process Saf. Environ. Prot. 133, 137. (2020).

    Article  Google Scholar 

  14. Q. Song, L. Zhang, and Z. Xu, J. Hazard. Mater. 381, 120973. (2020).

    Article  Google Scholar 

  15. L. Zhang, B. Wu, Y. Chen, and Z. Xu, J. Clean. Prod. 162, 141. (2017).

    Article  Google Scholar 

  16. Y. He, E. Ma, and Z. Xu, J. Hazard. Mater. 268, 185. (2014).

    Article  Google Scholar 

  17. J. Guan, S. Wang, H. Ren, Y. Guo, H. Yuan, X. Yan, J. Guo, W. Gu, R. Su, B. Liang, G. Gao, Y. Zhou, J. Xu, and Z. Guo, RSC Adv. 5, 102836. (2015).

    Article  Google Scholar 

  18. E. Ma, R. Lu, and Z. Xu, Green Chem. 14, 3395. (2012).

    Article  Google Scholar 

  19. H.H. Nejad, M. Kazemeini, and M. Fattahi, Adv. Mater. Res. 548, 186. (2012).

    Article  Google Scholar 

  20. H.B. Trinh, J.-C. Lee, Y.-J. Suh, and J. Lee, Waste Manag. 114, 148. (2020).

    Article  Google Scholar 

  21. M. Bhattacharya, and T. Basak, Energy 97, 306. (2016).

    Article  Google Scholar 

  22. M. Fattahi, M. Kazemeini, F. Khorasheh, and A. Rashidi, Chem. Eng. J. 250, 14. (2014).

    Article  Google Scholar 

  23. E. Ma, and Z. Xu, J. Hazard. Mater. 263, 610. (2013).

    Article  Google Scholar 

  24. S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, and H.A. Chase, J. Clean. Prod. 162, 1376. (2017).

    Article  Google Scholar 

  25. S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N.Y. Yek, W.A. Wan Mahari, X.Y. Lee, C.S. Han, D.-V.N. Vo, Q. Van Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W. Peng, and S.S. Lam, Chem. Eng. J. 389, 124401. (2020).

    Article  Google Scholar 

  26. Y.V. Bykov, K.I. Rybakov, and V.E. Semenov, J. Phys. D: Appl. Phys. 34, R55. (2001).

    Article  Google Scholar 

  27. F. Mushtaq, R. Mat, and F.N. Ani, Renew. Sust. Energy Rev. 39, 555. (2014).

    Article  Google Scholar 

  28. A. Goldstein, R. Ruginets, and L. Geifman, Ceram. Int. 35, 1297. (2009).

    Article  Google Scholar 

  29. N. Yoshikawa, K. Seki, N. Inoue, S. Komarov, K.-I. Kashimura, T. Fujii, and H. Fukushima, Mater. Chem. Phys. 234, 281. (2019).

    Article  Google Scholar 

  30. C.-H. Lee, M.-K. Jeong, M. Fatih Kilicaslan, J.-H. Lee, H.-S. Hong, and S.-J. Hong, Waste Manag. 33, 730. (2013).

    Article  Google Scholar 

  31. M. Assefi, S. Maroufi, R.K. Nekouei, and V. Sahajwalla, J. Clean. Prod. 180, 814. (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from Natural Science Foundation of China (51678353, 52070127), Shanghai Natural Science Foundation (20ZR1421100), Gaoyuan Discipline of Shanghai–Environmental Science and Engineering (Resource Recycling Science and Engineering), Cultivation discipline fund of Shanghai Polytechnic University (XXKPY1601), Eastern Scholar Professorship Grant, Shanghai Polytechnic University Program (EGD19XQD02), Shanghai Youth Science and Technology Talent Sailing Plan (17YF1425600), Special Found for Basic Business Expenses of Public Welfare Research Institutes at the Central Level (2016T10), and Henan Key Laboratory of Coal Green Conversion (Henan Polytechnic University, CGCF201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Guan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 243 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Guan, J., Yuan, H. et al. Behavior and Mechanism of Indium Extraction from Waste Liquid-Crystal Display Panels by Microwave-Assisted Chlorination Metallurgy. JOM 73, 1290–1300 (2021). https://doi.org/10.1007/s11837-021-04590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04590-5

Navigation