Skip to main content
Log in

Liberation and Enrichment of Metallic Iron from Reductively Roasted Copper Slag

  • Advances in Process Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Iron recovery from copper slag generated during copper production by the pyrometallurgical method has been widely investigated to achieve resource utilization. Liberation and enrichment of metallic iron from reductively roasted copper slag were explored in this work. Results show that metallic iron, quartz solid solution, and cristobalite solid solution are the main phases in reductively roasted copper slag, and most metallic iron particles are wrapped by silica. A concentrate with 74.39% Fe content and 83.14% Fe recovery is obtained through grinding–magnetic separation. For comparison, the metallic iron particles are liberated through alkali leaching of silica. The Fe content in leaching residue reaches 78.17% by removing 88.96% SiO2 and further increases to 90.45% by magnetic separation with Fe recovery of 85.20%. Therefore, alkali leaching–magnetic separation is suitable for treating reductively roasted copper slag because of the high Fe content in concentrate and comprehensive recovery of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive Metallurgy of Copper, 5th edn. (Elsevier Pte Ltd., Singapore, 2011)

    Google Scholar 

  2. K. Holland, R.H. Eric, P. Taskinen, and A. Jokilaakso, K. Holland, R.H. Eric, P. Taskinen, and A. Jokilaakso, Miner. Eng. 133, 35 (2019).

    Article  Google Scholar 

  3. Y. Tsunazawa, C.Z. Liu, R. Toi, T. Okura, and C. Tokoro, Y. Tsunazawa, C.Z. Liu, R. Toi, T. Okura, and C. Tokoro, Miner. Process. Extr. Metall. 128, 248 (2019).

    Google Scholar 

  4. B. Gorai, and R.K. Jana, B. Gorai, and R.K. Jana, Premchand. Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  5. H.W. Zhang, L. Sun, L. Fu, and Z.G. Ji, H.W. Zhang, L. Sun, L. Fu, and Z.G. Ji, JOM 71, 1997 (2019).

    Article  Google Scholar 

  6. I. Gaballah, S. El Raghy, and C. Gleitzer, I. Gaballah, S. El Raghy, and C. Gleitzer, J. Mater. Sci. 13, 1971 (1978).

    Article  Google Scholar 

  7. S. Gyurov, Y. Kostova, G. Klitcheva, and A. Ilinkina, S. Gyurov, Y. Kostova, G. Klitcheva, and A. Ilinkina, Waste Manage. Res. 29, 157 (2011).

    Article  Google Scholar 

  8. B. Kim, S. Jo, D. Shin, J. Lee, and S. Jeong, B. Kim, S. Jo, D. Shin, J. Lee, and S. Jeong, Int. J. Miner. Process. 124, 124 (2013).

    Article  Google Scholar 

  9. A. Warczok, and T.A. Utigard, A. Warczok, and T.A. Utigard, Can. Metall. Q. 37, 27 (1998).

    Article  Google Scholar 

  10. S. Gyurov, N. Marinkov, Y. Kostova, D. Rabadjieva, D. Kovacheva, C. Tzvetkova, G. Gentscheva, and I. Penkov, S. Gyurov, N. Marinkov, Y. Kostova, D. Rabadjieva, D. Kovacheva, C. Tzvetkova, G. Gentscheva, and I. Penkov, Int. J. Miner. Process. 158, 1 (2017).

    Article  Google Scholar 

  11. S.W. Zhou, Y.G. Wei, B. Li, and H. Wang, S.W. Zhou, Y.G. Wei, B. Li, and H. Wang, J. Cleaner Prod. 217, 423 (2019).

    Article  Google Scholar 

  12. H.F. Yang, L.L. Jing, and C.G. Dang, H.F. Yang, L.L. Jing, and C.G. Dang, Chin. J. Nonferrous Met. 21, 1165 ((in Chinese)) (2011).

    Google Scholar 

  13. T.J. Chun, G. Mu, Z. Di, H.M. Long, C. Ning, and D. Li, T.J. Chun, G. Mu, Z. Di, H.M. Long, C. Ning, and D. Li, Arch. Metall. Mater. 63, 299 (2018).

    Google Scholar 

  14. Z.Q. Guo, D.Q. Zhu, J. Pan, W.J. Yao, W.Q. Xu, and J.N. Chen, Z.Q. Guo, D.Q. Zhu, J. Pan, W.J. Yao, W.Q. Xu, and J.N. Chen, JOM 69, 1688 (2017).

    Article  Google Scholar 

  15. S.W. Li, J. Pan, D.Q. Zhu, Z.Q. Guo, J.W. Xu, and J.L. Chou, S.W. Li, J. Pan, D.Q. Zhu, Z.Q. Guo, J.W. Xu, and J.L. Chou, Powder Technol. 347, 159 (2019).

    Article  Google Scholar 

  16. R.M. Jiao, P. Xing, C.Y. Wang, B.Z. Ma, Y.Q. Chen, Int. J. Miner., Metall. Mater. 24, 974 (2017).

  17. Z.Q. Guo, D.Q. Zhu, J. Pan, and F. Zhang, Z.Q. Guo, D.Q. Zhu, J. Pan, and F. Zhang, J. Cleaner Prod. 187, 910 (2018).

    Article  Google Scholar 

  18. D.M. Croker, M. Loan, and B.K. Hodnett, D.M. Croker, M. Loan, and B.K. Hodnett, Cryst. Growth Des. 8, 4499 (2008).

    Article  Google Scholar 

  19. V.L. Rayzman, A.V. Aturin, I.Z. Pevzner, V.M. Sizyakov, L.P. Ni, and I.K. Filipovich, V.L. Rayzman, A.V. Aturin, I.Z. Pevzner, V.M. Sizyakov, L.P. Ni, and I.K. Filipovich, JOM 55, 47 (2003).

    Article  Google Scholar 

  20. P. Smith, P. Smith, Hydrometallurgy 98, 162 (2009).

    Article  Google Scholar 

  21. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.L. Wang, X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.L. Wang, Trans. Nonferrous Met. Soc. China 29, 416 (2019).

    Article  Google Scholar 

  22. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.L. Wang, X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, Z.H. Peng, and Y.L. Wang, Trans. Nonferrous Met. Soc. China 29, 186 (2019).

    Article  Google Scholar 

  23. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, and Z.H. Peng, X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, and Z.H. Peng, Waste Manage. 87, 798 (2019).

    Article  Google Scholar 

  24. B.A. Wills, and T.J. Napier-Munn, Mineral Processing Technology (Elsevier Science & Technology Books, Amsterdam, 2006)

    Google Scholar 

  25. R.C. Wang, Y.C. Zhai, Z.Q. Ning, and P.H. Ma, R.C. Wang, Y.C. Zhai, Z.Q. Ning, and P.H. Ma, Trans. Nonferrous Met. Soc. China 24, 1928 (2014).

    Article  Google Scholar 

  26. J. Luo, G.H. Li, T. Jiang, Z.W. Peng, M.J. Rao, Y.B. Zhang, J. Cent. South Univ. (Engl. Ed.) 23, 1883 (2016).

  27. T.J. Chun, C. Ning, H.M. Long, J.X. Li, and J.L. Yang, T.J. Chun, C. Ning, H.M. Long, J.X. Li, and J.L. Yang, JOM 68, 2332 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the China Postdoctoral Science Foundation (2019M662733), National Natural Science Foundation of China (51874219), and National Key Research and Development Program of China (2018YFC1901502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 414 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, X., Shen, L. et al. Liberation and Enrichment of Metallic Iron from Reductively Roasted Copper Slag. JOM 73, 1013–1022 (2021). https://doi.org/10.1007/s11837-021-04570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04570-9

Navigation