Skip to main content

Advertisement

Log in

A Review: Advances and Modernization in U.S Army Gun Propellants

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The U.S. Army is entering a period of modernization, phasing out older, limited and costlier weapon designs for new, more efficient, and effective weapon technologies. The emphasis has shifted to optimizing lethality and accuracy at extended ranges to reduce cost per kill via the use of mechanization and automation to provide more coverage with fewer systems while reducing crew burden, size, and training requirements. The improved overall system performance via integration of technology enablers such as additive manufacturing is prepositioned for future capability growth. Additive manufacturing, or 3D printing, has been postulated to allow the rate of energy release from gun propellant to be highly optimized by controlling the surface area of the grain, thus resulting in a high generation of gas to maintain pressure later in the ballistic cycle. Consequentially, higher efficiency is achieved with more energy delivered to the projectile, and faster launch velocities are achieved, providing an enhanced capability for maneuvering forces on the battlefield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Center for Strategic & International Studies, 2019, Army Modernization: Priorities to get to the Army of 2028. https://www.csis.org/analysis/army-modernization-priorities-get-army-2028. Accessed 1 July, 2020.

  2. Army Modernization Strategy: Investing in the Future https://www.army.mil/e2/downloads/rv7/2019_army_modernization_strategy_final.pdf. Accessed 1, July, 2020.

  3. E. Caravaca, U.S. Army, Denver, CO., unpublished research, 2016

  4. E. Rozumov, Energetic Materials, Vol. 25 (Berlin: Springer, 2017), p. 23.

    Book  Google Scholar 

  5. Nitrocellulose-Based Propellant Chemicals, 2020 https://www.islandpyrochemical.com/nitrocellulose-based-propellants/. Accessed 1 July, 2020.

  6. Energetic Material Products (2019) www.Copperheadchemical.com/products. Accessed 2 July, 2020.

  7. The Definitive List of Firearms Ammunition Manufacturers (2015) https://www.klsecurity.com/blog/firearms-ammunition-manufacturers-storage-magazines/. Accessed 2 July, 2020

  8. “Propellant Suppliers” (2020) https://www.thomasnet.com/products/propellants-63631600-1.html. Accessed 2 July, 2020

  9. “Weapons and Complex Integration”, (Cheetah), https://wci.llnl.gov/simulation/computer-codes/cheetah. Accessed 2, July 31, 2020.

  10. Fraunhofer ICT, “Propellants for rockets and guns”, (2020). https://www.ict.fraunhofer.de/en/comp/em/treib.html. Accessed July 2, 2020.

  11. K.W. Klingaman and J.K. Domen, U.S. Army. Picatinny Arsenal NJ, unpublished research (1994).

  12. M.H. Straathof, C.A. Driel, J.N.J. van Lingen, B.L.J. Igenhut, A.T. ten Cate, and H.H. Maalderink, Propellants Explos. Pyrotech. 45, 36 (2020).

    Article  Google Scholar 

  13. E. Caravaca, D. Bird, H. Grau, V. Panchal, and N.M. Ravindra, TMS 2019.

  14. D. Bird, J. Robinette, C. Occhifinto, E. Caravaca, S. Longo, R. Crownover, U.S. Army. Picatinny Arsenal, NJ., unpublished research (2017).

  15. ASTM, “Committee F42 on Additive Manufacturing Technologies” (2020), (https://www.astm.org/COMMITTEE/F42.htm. Accessed July 3, 2020.

  16. M. Chiroli, F. Ciszek, B. and Baschung, Solid Freeform Fabrication: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, 1003 (2018)

  17. I.E. Gunduz, M.S. McClain, P. Cattani, G.T.-C. Chiu, J.F. Rhoads, and S.F. Son, Addit. Manuf. 22, 98 (2018).

    Google Scholar 

  18. Stratasys, “Justifying a 3DP Investment for Rapid Prototyping” (2018) https://www.stratasys.com/explore/whitepaper/justifying-3d-printer-investment. Accessed July 3, 2020

  19. D. Wang, B. Zheng, G. Changping, B. Gao, J. Wang, G. Yang, H. Huang, and F. Nie, RSC Adv. 6, 113 (2016).

    Google Scholar 

  20. J. Wang, C. Xu, C. An, C. Song, B. Liu, B. Wu, and X. Geng, Propellants Explos. Pyrotechnol. (2017). https://doi.org/10.1002/prep.201700042.

    Article  Google Scholar 

  21. C. Xu, C. An, Q. Li, S. Xu, S. Wang, H. Guo, and J. Wang, Propellants Explos. Pyrotech. (2018). https://doi.org/10.1002/prep.201800069.

    Article  Google Scholar 

  22. C. Xu, C. An, Y. Zhang, Q. Li, and J. Wang, Propellants Explos. Pyrotech. (2018). https://doi.org/10.1002/prep.201800075.

    Article  Google Scholar 

  23. C. Xu, C. An, Y. Long, Q. Li, H. Guo, S. Wang, and J. Wan, RSC Adv. 8, 35863 (2018).

    Article  Google Scholar 

  24. Q. Li, C. An, X. Han, C. Xu, C. Song, B. Ye, B. Wu, and J. Wang, Propellants Explos. Pyrotech. 43, 533 (2018).

    Article  Google Scholar 

  25. Q. Li, C. An, J. Peng, C. Xu, H. Guo, S. Wang, B. Ye, and J. Wang, Propellants Explos. Pyrotech. 44, 1432 (2019).

    Article  Google Scholar 

  26. B. Ye, C. Song, H. Huang, Q. Li, C. An, and J. Wang, Defence Technol. 16, 588 (2020).

    Article  Google Scholar 

  27. H. Guo, S. Xu, H. Gao, X. Geng, C. An, C. Xu, Q. Li, S. Wang, B. Ye, and J. Wang, Propellants Explos. Pyrotech. 44, 935 (2019).

    Article  Google Scholar 

  28. W. Dunju, G. Changping, W. Ruihao, Z. Baohui, G. Bing, and N. Fude, J. Mater. Sci. 55, 2836 (2020).

    Article  Google Scholar 

  29. L. Zhang, F. Zhang, Y. Wang, R. Han, and Y. Li, J. Phys. (2019). https://doi.org/10.1088/1742-6596/1209/1/012016.

    Article  Google Scholar 

  30. Z. Li, H. Ren, Q. Jiao, and J. Dong, Integrated Ferroelectrics, 152 (2014) https://doi.org/10.1080/10584587.2014.901855.

  31. W. Yang, R. Hu, L. Zheng, G. Yan, and W. Yan, Mater. Des. 192, 1 (2020).

    Google Scholar 

  32. C. Tan, M. Zafir, M. Nasir, A. Ambrosi, and M. Pumera, Anal. Chem. (2017). https://doi.org/10.1021/acs.analchem.7b01614.

    Article  Google Scholar 

  33. M. Petch, UK defence agency plans to 3D print high explosives (3D Printing Industry, 2020) https://3dprintingindustry.com/news/uk-defence-agency-plans-to-3d-print-high-explosives-169082/. Accessed July 3, 2020.

  34. B. Jackson “Australian researchers launch explosive $2 million 3D printer materials partnership” (3D Printing Industry, 2018) https://3dprintingindustry.com/news/australian-researchers-launch-explosive-2-million-3d-printer-materials-partnership-129997/. Accessed July 3, 2020

  35. K.S. Mulage, R.N. Patkar, V.D. Deuskar, S.M. Pundlik, S.D. Kakade, and M. Gupta, J. Energ. Mater. 25, 233 (2007).

    Article  Google Scholar 

  36. R.A. Chandru, N. Balasubramanian, C. Oommen, and B.N. Raghunandan, J. Propuls. 34, 1090 (2018).

    Article  Google Scholar 

  37. S. Sevilla, A. Mishra, M. Zelner, M. Yong, D. Grinstein, O. Meikler, L. Gottlieb, C. Denekamp, and Y. Eichen, Israel Institute of Technology, Haifa, unpublished research, 2019.

  38. D.V. Mil’chenko, V.A. Gubachev, L.A. Andreevskikh, S.A. Vakhmistrov, A.L. Mikhailov, V.A. Burnashov, E.V. Khaldeev, A.I. Pyatoikina, S.S. Zhuralev, and V.N. German, Combus Explos Shock Waves 51, 80 (2015).

    Article  Google Scholar 

  39. N.V. Muravyev, K.A. Monogarov, U. Schaller, I.V. Fomenkov, and A.N. Pivkina, Propellants Explos. Pyrotech. 44, 941 (2019).

    Article  Google Scholar 

  40. C. Huang, G. Jian, J.B. DeLisio, H. Wang, and M.R. Zachariah, Adv. Eng. Mater. 17, 95 (2015).

    Article  Google Scholar 

  41. X. Li, P. Guerieri, W. Zhou, C. Huang, and M.R. Zachariah, ACS Appl. Mater. Interfaces 7, 9103 (2015).

  42. T. Wu, X. Li, X. Hu, J.B. Delisio, W. Zhou, and M.R. Zachariah, AIAA SciTech (2016). https://doi.org/10.2514/6.2016-0688.

    Article  Google Scholar 

  43. X. Li and M. Zachariah, Propellants Explos. Pyrotech. 42, 1079 (2017).

    Article  Google Scholar 

  44. H. Wang, M. Rehwoldt, D.J. Kline, T. Wu, P. Wang, and M.R. Zachariah, Combust. Flame 201, 181 (2019).

    Article  Google Scholar 

  45. H. Wang, D.J. Kline, M. Rehwoldt, T. Wu, W. Zhao, X. Wang, M.R. Zachariah, and A.C.S. Appl, Polym. Mater. 1, 982 (2019).

    Google Scholar 

  46. H. Wang, J. Shen, D.J. Kline, N. Eckman, N.R. Agrawal, T. Wu, P. Wang, and M.R. Zachariah, Adv. Mater. (2019). https://doi.org/10.1002/adma.201806575.

    Article  Google Scholar 

  47. J. Shen, H. Wang, D.J. Kline, Y. Yang, X. Wang, M. Rehwoldt, T. Wu, S. Holdren, and M.R. Zachariah, Combust. Flame 215, 86 (2020).

    Article  Google Scholar 

  48. M.C. Rehwoldt, H. Wang, D.J. Kline, T. Wu, N. Eckman, P. Wang, N.R. Agrawal, and M.R. Zachariah, Combust. Flame 211, 260 (2020).

    Article  Google Scholar 

  49. D.J. Kline, Z. Alibay, M.C. Rehwoldt, A. Idrogo-Lam, S.G. Hamilton, P. Biswas, F. Xu, and M.R. Zachariah, Combust. Flame 215, 417 (2020).

    Article  Google Scholar 

  50. R. Nellums, S.F. Son, and L.J. Groven, Propellants Explos. Pyrotech. 39, 463 (2014).

    Article  Google Scholar 

  51. T.J. Fleck, A.K. Murray, I. Emre Gunduz, S.F. Son, G.T.-C. Chiu, and J.F. Rhoads, Addit. Manuf. 17, 176 (2017).

    Google Scholar 

  52. A.K. Murray, T. Isik, V. Ortalan, I.E. Gunduz, S.F. Son, G.T.-C. Chiu, and J.F. Rhoads, J. Appl. Phys. (2017). https://doi.org/10.1063/1.4999800.

    Article  Google Scholar 

  53. A.K. Murray, W.A. Novotny, T.J. Fleck, I.E. Gunduz, S.F. Son, G.T.-C. Chiu, and J.F. Rhoads, Addit. Manuf. 22, 69 (2018).

    Google Scholar 

  54. J.F. Rhoads G.T.-C Chiu I.E. Gunduz, T.J. Fleck A.K. Murray, and S.F. Son, 3D printed fluoropolymer-based energetic compositions (US20190030789A1, 2019), https://patents.google.com/patent/US20190030789A1. Accessed July 5, 2020.

  55. J.F. Rhoads, I.E. Gunduz, S.F. Son, and G. Chiu. Methods and apparatus for 3d printing of highly viscous materials (US20190283319A1, 2019), https://patents.google.com/patent/US20190283319A1. Accessed July 5, 2020.

  56. M.S. McClain, I.E. Gunduz, and S.F. Son, Proc. Combust. Inst. 37, 3135 (2019).

    Article  Google Scholar 

  57. D.N. Collard, M. McClain, T. Fleck, N. Rahmann, J. Rhoads, T. Meyer, and S. Son, AIAA 2019-4443 (2019) https://doi.org/10.2514/6.2019-4443.

  58. E.R. Westphal, A.K. Murray, M.P. McConnell, T.J. Fleck, G.T.-C. Chiu, J.F. Rhoads, I.E. Gunduz, and S.F. Son, Propellants Explos. Pyrotech. 44, 47 (2019).

    Article  Google Scholar 

  59. A.K. Murray, Exploring the inkjet printing of functional materials and their use in energetic systems and sensing applications (Thesis, 2019),https://hammer.figshare.com/articles/EXPLORING_THE_INKJET_PRINTING_OF_FUNCTIONAL_MATERIALS_AND_THEIR_USE_IN_ENERGETIC_SYSTEMS_AND_SENSING_APPLICATIONS/10283516.. Accessed July 7, 2020.

  60. M. McClain, A. Afriat, B.J. Montano, S. Ray, J. Rhoads, I.E. Gunduz, and S.F. Son, AIAA 2020-1427 (2020). https://doi.org/10.2514/6.2020-1427.

    Article  Google Scholar 

  61. M. McClain, A. Afriat, J.F. Rhoads, I.E. Gunduz, and S.F. Son, Propellants Explos. Pyrotech. 45, 853 (2020).

    Article  Google Scholar 

  62. F. Ruz-Nuglo, L. Groven, and J.A. Puszynski, AIAA 2014-3894 (2014). https://doi.org/10.2514/6.2014-3894.

    Article  Google Scholar 

  63. F. Ruz-Nuglo and L. Groven, AIAA (2017). https://doi.org/10.1002/adem.201700390.

    Article  Google Scholar 

  64. Texas Tech University, Printed Energetics—The Path towards additive manufacturing munitions (National Energetic Materials Consortium, 2020), https://www.depts.ttu.edu/research/NEMC/Groven.php. Accessed July, 6, 2020.

  65. I.T. Walters and L.J. Groven, ACS Sustainable Chem. Eng. 7, 4360 (2019).

    Article  Google Scholar 

  66. K. Meeks, M.L. Pantoya, and C. Apblett, Combust. Flame 161, 1117 (2014).

    Article  Google Scholar 

  67. K. Meeks, B.R. Clark, J.E. Cano, C.A. Apblett, and M.L. Pantoya, Combust. Flame 162, 3288 (2015).

    Article  Google Scholar 

  68. B. Clark, J. McCollum, M.L. Pantoya, R.J. Heaps, and M.A. Daniels, AIP Adv. (2015). https://doi.org/10.1063/1.4928570.

    Article  Google Scholar 

  69. B. Clark, Z. Zhang, G. Christopher, and M.L. Pantoya, J. Mater. Sci. 52, 993 (2017).

    Article  Google Scholar 

  70. M. Sweeney, L.L. Campbell, J. Hanson, M.L. Pantoya, and G.F. Christopher, J. Mater. Sci. 52, 13040 (2017).

    Article  Google Scholar 

  71. M.A. Sweeney, K.R. Bratton, C. Woodruff, C. Cagle, K.J. Hill, M.L. Pantoya, and G.F. Christopher, Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201801324.

    Article  Google Scholar 

  72. H. Woods, A. Boddorff, E. Ewaldz, Z. Adams, M. Ketcham, D.J. Jang, E. Sinner, N. Thadhani, and B. Brettmann, Propellants Explos. Pyrotech. 45, 26 (2019).

    Article  Google Scholar 

  73. Georgia Tech, Shock response of mock-Additively Manufactured Energetic Materials (School of Materials Science and Engineering), http://hsrlab.gatech.edu/research-areas/physical-drug-delivery/. Accessed July 7, 2020.

  74. J.A. Bencomo, S.T. Iacono, and J. McCollum, J. Mater. Chem. A 6, 12308 (2018).

    Article  Google Scholar 

  75. D. Kalyon, H. Tang, H. Gevgilili, C. Demir and J.E. Kowalczyk, Squeeze Flow Rheometry for Rheological Characterization of Energetic Formulation (Stevens Institute of Technology, 2006) https://folk.ntnu.no/skoge/prost/proceedings/aiche-2006/data/papers/P74632.pdf. Accessed July 10, 2020.

  76. D.M. Kalyon, J. Energy Mater. 24, 213 (2006).

    Article  Google Scholar 

  77. D.T. Bird, Formulation of UV curable resins utilized in vat photo polymerization for the additive manufacturing of gun propulsion charge in 3D printers (New Jersey institute of Technology, 2017). https://digitalcommons.njit.edu/theses/42/. Accessed July 11, 2020.

  78. K. Kambly, Characterization of curing kinetics and polymerization shrinkage in ceramic-loaded photocurable resins for large area maskless photopolymerization (LAMP) (Georgia Institute of Technology, 2009). https://core.ac.uk/display/4733626. Accessed July 12, 2020.

  79. Formlabs, “3D Printers” (2020) https://formlabs.com/3d-printers/. Accessed July 3, 2020.

  80. SprintRay, “Moonray 3D Printer” (2020) https://sprintray.com/moonray-desktop-3d-printer/. Accessed July 3, 2020.

  81. S. Mo, X. Shao, Y. Chen, and Z. Cheng, Sci. Rep. (2016). https://doi.org/10.1038/srep36836.

    Article  Google Scholar 

  82. M.M. Rueda, M.-C. Auscher, R. Fulchiron, T. Périé, G. Martin, P. Sonntag, and P. Cassagnau, Prog. Polym. Sci. 66, 22 (2017).

    Article  Google Scholar 

  83. Resodyn Aoustic Mixers, Resonance for power and efficiency, Acoustics for Performance and Quality (2019). https://resodynmixers.com/. Accessed July 11, 2020.

  84. FlackTek SpeedMixer, The Technology (2020). https://speedmixer.com/speedmixer-technology/. Accessed July 11, 2020.

  85. The Formulator’s Toolbox, Experimental Design https://www.crodacropcare.com/en-gb/discovery-zone/the-formulators-toolbox. Accessed July 12, 2020.

  86. N. Barton, Linking microstructure with part performance https://manufacturing.llnl.gov/additive-manufacturing/. Accessed July 12, 2020.

  87. P. Sehnal, K. Harper, A.T. Rose, D.G. Anderson, W.A. Green, B. Husar, M. Griesser, and R. Liska, Novel Phosphine Oxide Photoinitiators (Radtech, 2014). https://radtech.org/2014proceedings/papers/technical-conference/Photoinitiator/. Accessed July 12, 2020.

  88. Y. Wu, Photoinitiator basic chemistry. Introduction to formulating and products for LED cure and low migration” (IGM Resins USA Inc, 2015) https://abrafati2019.com.br/2015/Dados/PDF/Paper_068.pdf. Accessed July 12, 2020.

  89. V. Mucci and C. Vallo, J. Appl. Polym. Sci. 123, 418 (2012).

    Article  Google Scholar 

  90. J. Christmann, C. Ley, X. Allomas, A. Ibrahim, and C. Croutxé-Barghorn, Polymer 160, 254 (2019).

    Article  Google Scholar 

  91. K.A. Berchtold, T.W. Randolph, and C.N. Bowman, Macromolecules 38, 6954 (2005).

    Article  Google Scholar 

  92. M.H. Straathof, C.A. van Driel, and A.T. ten Cate, Energetic Materials (WO2017/164731 A1, 2017), https://patents.google.com/patent/US20190030789A1. Accessed July 5, 2020.

  93. Visible and Ultraviolet Spectroscopy (2013) https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/spectrum.htm. Accessed July, 13, 2020.

  94. M.A. Meyers, and K.K. Chawla, in Mechanical Behavior of Materials 2nd Edition. New York, NY: Cambridge University Press, 2009) pp. 1–10.

Download references

Acknowledgements

The authors thank the NJ U.S. Army Combat Capabilities Development Command Armaments Center (CCDC AC), Picatinny Arsenal and the New Jersey Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ravindra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bird, D.T., Ravindra, N.M. A Review: Advances and Modernization in U.S Army Gun Propellants. JOM 73, 1144–1164 (2021). https://doi.org/10.1007/s11837-021-04566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04566-5

Navigation