Skip to main content
Log in

Aluminum Smelting Carbon Dust as a Potential Raw Material for Gallium and Germanium Extraction

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Gallium and germanium are highly important elements used in different high-tech areas, and new secondary raw materials for its extraction are the subject of a thorough search. In this study, germanium is found in the wastes from the Hall-Heroult process for the first time. The mechanism of gallium and germanium circulation in the aluminum reduction cell is discussed. Four types of materials, namely carbon dust, flotation tailings, carbon concentrate, and ash, were examined. It was found that a temperature of 900 °C is sufficient for the complete combustion of the carbon concentrate. The gallium concentration in the ash may reach up to 4.0 kg/ton. The germanium extraction to sublimates reaches up to 90%. Carbon concentrate being the processing product of carbon dust from an aluminum reduction cell is a promising secondary raw material for germanium and gallium extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Ji, K. Xie, S. Yan, H. Huang, and H. Chen, J. Hazard. Mater. 400, 123234. https://doi.org/10.1016/j.jhazmat.2020.123234 (2020).

    Article  Google Scholar 

  2. Y. Xiong, X. Cui, M. Zhang, Y. Wang, Z. Lou, and W. Shan, Appl. Surf. Sci. 510, 145414. https://doi.org/10.1016/j.apsusc.2020.145414 (2020).

    Article  Google Scholar 

  3. F. Dimroth and S. Kurtz, MRS Bull. 32, 230. https://doi.org/10.1557/mrs2007.27 (2007).

    Article  Google Scholar 

  4. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 1st edn. (Wiley, Chichester, 2003), pp 403–423

    Book  Google Scholar 

  5. C.L. Claeys and E. Simoen, Germanium-Based Technologies: from Materials to Devices (Elsevier B.V, Amsterdam, 2007), pp 11–19

    Google Scholar 

  6. B.W. Jaskula, Mineral Commodity Summaries (U.S. Department of the Interior, Virginia, 2020), pp 62–63. https://doi.org/10.3133/mcs2020

    Book  Google Scholar 

  7. A.C. Tolcin, Mineral Commodity Summaries (U.S. Department of the Interior, Virginia, 2020), pp 68–69. https://doi.org/10.3133/mcs2020

    Book  Google Scholar 

  8. F. Liu, Z. Liu, Y. Li, Z. Liu, Q. Li, and L. Zeng, Hydrometallurgy 164, 313. https://doi.org/10.1016/j.hydromet.2016.06.006 (2016).

    Article  Google Scholar 

  9. S. Fugleberg, Finnish Expert Report on Best Available Techniques in Zinc Production (Finnish Environment Institute, Helsinki, 1999), p 34

    Google Scholar 

  10. T. Kinoshita, Y. Ishigaki, N. Shibata, K. Yamaguchi, S. Akita, S. Kitagawa, H. Kondou, and S. Nii, Sep. Purif. Technol. 78, 181. https://doi.org/10.1016/j.seppur.2011.01.044 (2011).

    Article  Google Scholar 

  11. S.V. Roosendael, J. Roosen, and D.. Banerjee, K. Binnemans, Sep. Purif. Technol. 221, 83. https://doi.org/10.1016/j.seppur.2019.03.068 (2019).

    Article  Google Scholar 

  12. R. Höll, M. Kling, and E. Schroll, R. Höll, M. Kling, and E. Schroll, Ore Geol. Rev. 30, 145. https://doi.org/10.1016/j.oregeorev.2005.07.034 (2007).

    Article  Google Scholar 

  13. R. Moskalyk, Miner. Eng. 17, 393. https://doi.org/10.1016/j.mineng.2003.11.014 (2004).

    Article  Google Scholar 

  14. O. Font, X. Querol, R. Juan, R. Casado, C.R. Ruiz, Á. López-Soler, P. Coca, and F.G. Peña, J. Hazard. Mater. 139, 413. https://doi.org/10.1016/j.jhazmat.2006.02.041 (2007).

    Article  Google Scholar 

  15. F. Arroyo, O. Font, J.M. Chimenos, C. Fernández-Pereira, X. Querol, and P. Coca, Fuel Process. Technol. 124, 222. https://doi.org/10.1016/j.fuproc.2014.03.004 (2014).

    Article  Google Scholar 

  16. M. Maarefvand, S. Sheibani, and F. Rashchi, Hydrometallurgy 191, 105230. https://doi.org/10.1016/j.hydromet.2019.105230 (2020).

    Article  Google Scholar 

  17. Z. Fang and H. Gesser, Hydrometallurgy 41, 187. https://doi.org/10.1016/0304-386x(95)00055-l (1996).

    Article  Google Scholar 

  18. Z. Zhao, Y. Yang, Y. Xiao, and Y. Fan, Hydrometallurgy 125–126, 115. https://doi.org/10.1016/j.hydromet.2012.06.002 (2012).

    Article  Google Scholar 

  19. A. Figueiredo, W. Avristcher, E. Masini, S. Diniz, and A. Abrão, J. Alloy. Compd. 344, 36. https://doi.org/10.1016/s0925-8388(02)00301-8 (2002).

    Article  Google Scholar 

  20. F. Lu, T. Xiao, J. Lin, Z. Ning, Q. Long, L. Xiao, F. Huang, W. Wang, Q. Xiao, X. Lan, and H. Chen, Hydrometallurgy 174, 105. https://doi.org/10.1016/j.hydromet.2017.10.010 (2017).

    Article  Google Scholar 

  21. F.A. Torralvo and C. Fernández-Pereira, Miner. Eng. 24, 35. https://doi.org/10.1016/j.mineng.2010.09.004 (2011).

    Article  Google Scholar 

  22. W. Butterman and J.D. Jorgenson, Mineral Commodity Profiles: Germanium. Open-File Report (US Department of the Interior, Virginia, 2005), pp 5–6. https://doi.org/10.3133/ofr20041218

    Book  Google Scholar 

  23. A. Jassim, N.A. Jabri, S.A. Rabbaa, E.G. Mofor, and J. Jamal, Miner. Met. Mater. Ser. https://doi.org/10.1007/978-3-030-05864-7_91 (2019).

    Article  Google Scholar 

  24. Y.G. Mikhalev, P.V. Polyakov, A.S. Yasinskiy, and A.A. Polyakov, Tsvetnye Met. 9, 43. https://doi.org/10.17580/tsm.2018.09.06 (2018).

    Article  Google Scholar 

  25. L. Bugnion and J.-C. Fischer, Light Met. https://doi.org/10.1007/978-3-319-48251-4_99 (2016).

    Article  Google Scholar 

  26. V. Chrenkova, V. Danek, A. Silny, M. Koniar, and M. Stas, Eleventh International Aluminum Symposium, Trondheim, 9 (2001).

  27. E. Lee Bray, Mineral Commodity Summaries (U.S. Department of the Interior, Virginia, 2020), pp 20–21. https://doi.org/10.3133/mcs2020

    Book  Google Scholar 

  28. B.J. Welch, Miner. Met. Mater. Ser. https://doi.org/10.1007/978-3-030-36408-3_155 (2020).

    Article  Google Scholar 

  29. M. Xie, H. Lv, T. Lu, H. Zhao, R. Li, and F. Liu, Miner. Met. Mater. Ser. https://doi.org/10.1007/978-3-030-36408-3_173 (2020).

    Article  Google Scholar 

  30. P. Polyakov, A. Yasinskiy, A. Polyakov, A. Zavadyak, Y. Mikhalev, and I. Puzanov, Miner. Met. Mater. Ser. https://doi.org/10.1007/978-3-030-05864-7_99 (2019).

    Article  Google Scholar 

  31. V.V. Kondratiev, V.N. Petrovskaya, E.P. Rzhechitskiy, A.A. Nemarov, and N.N. Ivanchik, Bull. Irkutsk State Tech. Univ. 12, 215. (2015).

    Google Scholar 

  32. Ru Patent No 2685566. Method for processing carbon dust from electrolytic aluminum production [In Rus: Sposob pererabotky ugolnoy peny elektroliticheskogo proizvodstva alyuminiya]; appl. 07.06.2018; publ. 22.04.2019, Bulletin No 12.

  33. T.E. Jentoftsen, “Behavior of iron and titanium species in cryolite-alumina melts “ (NTNU Open, 2001). http://hdl.handle.net/11250/248748 Accessed 9 September 2020.

  34. I. Galasiu, R. Galasiu, and J. Thonstad, Inert Anodes for Aluminum Electrolysis (Aluminum-Verlag, Düsseldorf, 2007), pp 17–19

    Google Scholar 

  35. A.F. Shimanskii, E.D. Kravtsova, and Y.V. Kazantsev, J. Sib. Fed. Univ. Eng. Technol. 11, 437. https://doi.org/10.17516/1999-494x-0070 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The work is performed as a part of the state assignment for science of Siberian Federal University, Project Number FSRZ-2020-0013. The use of equipment of Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yasinskiy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimanskii, A., Yasinskiy, A., Yakimov, I. et al. Aluminum Smelting Carbon Dust as a Potential Raw Material for Gallium and Germanium Extraction. JOM 73, 1103–1109 (2021). https://doi.org/10.1007/s11837-021-04563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04563-8

Navigation