Skip to main content
Log in

High-Efficiency Oxidant-Free Leaching of Rhenium from Arsenic–Rhenium Filter Cake

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Arsenic–rhenium filter cake, one of the main wastes produced by copper smelting systems, is a vital source of rhenium (Re). Using traditional hydrometallurgy methods, rhenium can be leached by sulfuric acid solution with the help of oxidants. However, the residual oxidants can seriously affect the efficiency and lifetime of the extractants and ion-exchange resins. We herein propose a novel method to leach rhenium through a displacement reaction using copper sulfate solution, thereby avoiding the use of oxidants. The results show that Re element exists in the arsenic–rhenium filter cake in two forms: Re2S7 and (As,Re)S amorphous. The rhenium leaching efficiency can reach 93.18%, and the kinetic data fit the shrinking core model. The leaching rate is controlled first by chemical reaction, with an apparent activation energy of 78.46 kJ mol−1. Afterwards, the leaching kinetics of rhenium fits an internal diffusion model. The results provide theoretical guidance on how to make full use of waste residues from copper smelting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.W. Zhao and H.G. Li, Metall. Mater. Trans. B. 39, 519. (2008).

    Article  Google Scholar 

  2. P. Raj, G. Singh, A.W. Thomas, and A. Scott, Braymiller. Int. J Refract. Met. H. 50, 79. (2015).

    Article  Google Scholar 

  3. Y.Y. Shen, Y. Jiang, X.Y. Qiu, and S.L. Zhao, JOM 69, 1976. (2017).

    Article  Google Scholar 

  4. Z.S. Abisheva, A.N. Zagorodnyaya, and N.S. Bekturganov, Hydrometallurgy 109, 1. (2011).

    Article  Google Scholar 

  5. R.R. Srivastava, M.S. Kim, and J.C. Lee, Ind. Eng. Chem. Res. 55, 8197. (2016).

    Article  Google Scholar 

  6. E.I. Gedgagov, S.V. Zakhar’yan, and D.V. Zakhar’yan, Theor. Found. Chem. Eng. 52, 912. (2018).

    Article  Google Scholar 

  7. H.S. Kim, J.S. Park, S.Y. Seo, T. Tran, and M.J. Kim, Hydrometallurgy 156, 158. (2015).

    Article  Google Scholar 

  8. E.E. Maltseva, A.A. Blokhin, Y.V. Murashkin, and M.A. Mikhaylenko, Russ. J Non-ferr. Met. 58, 463. (2017).

    Article  Google Scholar 

  9. J. Yañez, S. Torres, D. Sbarbaro, R. Parra, and C. Saavedra, IFAC-PapersOnLine 51, 251. (2018).

    Article  Google Scholar 

  10. S. Virolainen, M. Laatikainen, and T. Sainio, Hydrometallurgy 158, 74. (2015).

    Article  Google Scholar 

  11. S.K. Mamo, M. Elie, M.G. Baron, A.M. Simons, and J. Gonzalez-Rodriguez, Sep. Purif. Technol. 212, 150. (2019).

    Article  Google Scholar 

  12. A.O. Gezerman and B.D. Çorbacıoğlu, Sur. Eng. 31, 641. (2015).

    Article  Google Scholar 

  13. A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici, and H. Deveci, Miner. Eng. 25, 28. (2012).

    Article  Google Scholar 

  14. S.V. Zakhar’yan and E.I. Gedgagov, Theor. Found. Chem. Eng. 47, 637. (2013).

    Article  Google Scholar 

  15. F. Zhou, Q. Liu, J. Feng, J.X. Su, X. Liu, and R. Chi, Sep. Purif. Technol. 217, 24. (2019).

    Article  Google Scholar 

  16. H.U. Sverdrup, A.H. Olafsdottir, K.V. Ragnarsdottir, and D. Koca, BioPhys. Eco. Resour. Qual. 3, 7. (2018).

    Google Scholar 

  17. O. Levenspiel, Ind. Eng. Chem. Res. 38, 4140. (1999).

    Article  Google Scholar 

  18. S.S. Javaherian, H. Aghajani, and H. Tavakoli, Miner. Process. Extra. M. 127, 182. (2018).

    Google Scholar 

  19. M.R. Altıokka, H. Akalın, N. Melek, and S. Akyalçın, Ind. Eng. Chem. Res. 49, 12379. (2010).

    Article  Google Scholar 

  20. M. Li, X.W. Zhang, Z.G. Liu, Y.H. Hu, M.T. Wang, J. Liu, and J.P. Yang, Hydrometallurgy 140, 71. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 51874257 and 51374185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqu Zheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Shen, Y., Yu, T. et al. High-Efficiency Oxidant-Free Leaching of Rhenium from Arsenic–Rhenium Filter Cake. JOM 73, 913–922 (2021). https://doi.org/10.1007/s11837-020-04560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04560-3

Navigation