Skip to main content
Log in

Dissolution Behavior of Sn in CaO–CaF2 Molten Flux and Its Distribution Ratio Between CaO–CaF2 Molten Flux and Liquid Iron

  • Pyrometallurgical Processing of Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The dissolution behavior of Sn in CaO–\(\hbox {CaF}_2\) flux was investigated. A chemical equilibration technique was employed which allows pure liquid Sn dissolves into the molten flux under various oxygen partial pressure and the flux composition. At an equilibrium, (% Sn) in the flux increased by increasing (% CaO) and \(p_{\text{O}_2}\). It was found that Sn dissolves into the molten flux as (\(\hbox {SnO}_3\))\(^{4-}\) in the condition of the present study. Distribution of Sn between CaO saturated flux and C saturated liquid Fe was measured under a pure CO atmosphere. Sn distribution ratio (\(L_{\text{Sn}} = (\%\,\text{Sn})_{\text{flux}}/[\%\,\text{Sn}]_{\text{iron}}\)) was as low as \(\sim 10^{-4}\), which was consistent with a thermodynamic prediction. Sn distribution was favored at a lower temperature. Thermodynamic modeling was carried out for the Sn dissolution in the flux. A noticeable negative deviation between CaO and SnO was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(p_{\text{O}_2} = P_{\text{O}_2}(\text{Pa}) / P_{\text{O}_2}^\circ \text{(= 101, 32 5 Pa)}\)

References

  1. U. Srivastava, and S.K. Kawatra, Mineral Proc. Extractive Metall. Rev. 30, 361 (2009)

    Article  Google Scholar 

  2. S.S. Rath, H. Sahoo, N. Dhawan, D.S. Rao, B. Das, and B.K. Mishra, Sep. Sci. Technol. 49, 1927 (2014)

    Article  Google Scholar 

  3. T. Chun, D. Zhu, and J. Pan, Miner. Proc. Extract. Metall. Rev. 36, 223 (2015)

    Article  Google Scholar 

  4. Z. Su, Y. Zhang, B. Liu, M. Lu, G. Li, and T. Jiang, JOM 69, 2364 (2017)

    Article  Google Scholar 

  5. L. Savov, S. Tu, and D. Janke, ISIJ Int. 40, 654 (2000)

    Article  Google Scholar 

  6. L. Savov, and D. Janke, ISIJ Int. 40, 95 (2000)

    Article  Google Scholar 

  7. L. Savov, E. Volkova, and D. Janke, Mater. Geoenviron.. 50, 627 (2003)

    Google Scholar 

  8. K. Ito, M. Kishimoto, and K. Mori, Tetsu-to-Hagane 78, 1441 (1992)

    Article  Google Scholar 

  9. H.A. Persson, and R. Harris, Erzmetall 37, 174 (1984)

    Google Scholar 

  10. S.-H. Jung, Y.-B. Kang, J.-D. Seo, J.-K. Park, and J. Choi, Metall. Mater. Trans. B 46B, 250 (2015)

    Article  Google Scholar 

  11. S.-H. Jung, Y.-B. Kang, J.-D. Seo, J.-K. Park, and J. Choi, Metall. Mater. Trans. B 46B, 259 (2015)

    Article  Google Scholar 

  12. S.-H. Jung, Y.-B. Kang, J.-D. Seo, J.-K. Park, and J. Choi, Metall. Mater. Trans. B 46B, 267 (2015)

    Article  Google Scholar 

  13. T. Isawa, T. Wakssugi, K. Noguchi, and N. Sano, Steel Res. 58, 296 (1987)

    Article  Google Scholar 

  14. M. Ohno, A. Kozlov, R. Arroyave, Z. Liu, and R. Schmid-Fetzer, Acta Mater. 54, 4939 (2006)

    Article  Google Scholar 

  15. L. Jie, and X. Chao, J. Non-Crystalline Solids 119, 37 (1990)

    Article  Google Scholar 

  16. Y. Takeda, S. Ishiwata, and A. Yazawa, Trans. JIM 24, 518 (1983)

    Article  Google Scholar 

  17. Y. Takeda, A. Yazawa, P.P. Chit, and H. Uijie, Mater. Trans. JIM 31, 793 (1990)

    Article  Google Scholar 

  18. M. Nagamori, and P.J. Mackey, Metall. Trans. B 8B, 39 (1977)

    Article  Google Scholar 

  19. E. Grimsey, and P. Dawson, Proc. Austral. Inst. Min. Metall. 286, 15 (1983)

    Google Scholar 

  20. S.J. Street, K.S. Coley, and G.A. Irons, Scand. J. Metall. 30, 358 (2001)

    Article  Google Scholar 

  21. C. Wang, T. Nagasaka, M. Hino, and S. Ban-ya, ISIJ Int. 31, 1336 (1991)

    Article  Google Scholar 

  22. D. Gaskell, and D. Laughlin, Introduction Thermodynamics Materials, 6th edn. (CRC Press, Boca Raton, FL, 2018), pp. 649–656

    Google Scholar 

  23. D.-G. Kim, M.-A.V. Ende, C.V. Hoek, C. Liebske, S.V.D. Laan, and I.-H. Jung, Metall. Mater. Trans. B 43B, 1315 (2012)

    Article  Google Scholar 

  24. H. Okamoto, J. Phase Equil. 19, 486 (1998)

    Article  Google Scholar 

  25. I. Isomäki, M. Hämäläinen, W. Gierlotka, B. Onderka, and K. Fitzner, J. Alloys Comp. 422, 173 (2006)

    Article  Google Scholar 

  26. A.D. Pelton, P. Chartrand, and G. Eriksson, Metall. Mater. Trans. A 32A, 1409 (2001)

    Article  Google Scholar 

  27. Y.-B. Kang, and A.D. Pelton, Metall. Mater. Trans. B 40B, 979 (2009)

    Article  Google Scholar 

  28. Y.-J. Kim, D.-H. Woo, H. Gaye, H.-G. Lee, and Y.-B. Kang, Metall. Mater. Trans. B 42B, 535 (2011)

    Article  Google Scholar 

  29. Y.-B. Kang, and J.-H. Park, Metall. Mater. Trans. B 42B, 1211 (2011)

    Article  Google Scholar 

  30. R. Piao, H.-G. Lee, and Y.-B. Kang, Acta Mater. 61, 683 (2013)

    Article  Google Scholar 

  31. Y. Jo, H.-G. Lee, and Y.-B. Kang, ISIJ Int. 53, 751 (2013)

    Article  Google Scholar 

  32. R. Piao, H.-G. Lee, and Y.-B. Kang, ISIJ Int. 53, 2132 (2013)

    Article  Google Scholar 

  33. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.-A. Van Ende, Calphad 54, 35 (2016)

    Article  Google Scholar 

  34. K. Shubhank, and Y.-B. Kang, Calphad 45, 127 (2014)

    Article  Google Scholar 

  35. A.D. Pelton, G. Eriksson, and C.W. Bale, Calphad 33, 679 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by POSCO. Some of the present authors thank Mr. W.-B. Park, POSTECH, for his help during a part of experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Ethics declarations

Conflict of interest

On the behalf of all coauthors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Cho, YM., Park, SC. et al. Dissolution Behavior of Sn in CaO–CaF2 Molten Flux and Its Distribution Ratio Between CaO–CaF2 Molten Flux and Liquid Iron. JOM 73, 1080–1089 (2021). https://doi.org/10.1007/s11837-020-04553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04553-2

Navigation