Skip to main content
Log in

Optical, Microstructure, and Electromagnetic Properties of (1 − x)ZnO − xCuO Powders Prepared Using Two-Stage Sintering and Direct Synthesis

  • Powder Materials for Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, CuO, ZnO, and (1 − x)ZnO − xCuO (CZO) powders were synthesized through the aqueous solution method. Sintering (separate) and direct synthesis were conducted at 500°C and 700°C, respectively, to produce CuO, ZnO, and CZO powders in different proportions. Various proportions of (1 − x)ZnO−xCuO (x = 0.33, 0.5, 0.67) powders were analyzed and compared under various temperature and process conditions. The morphology, phase structure, and photoelectromagnetic properties of CZO were analyzed to determine the influence of ZnO, CuO, and their mutual doping on the photoelectromagnetic properties. The results revealed that direct synthesis was the most effective process and that CZO powder exhibited the best electromagnetic properties when the Cu doping ratio was high—when Cu:Zn was close to 1:1. When Cu was doped excessively (x = 0.67), it resulted in the formation of the cuprous oxide phase, which is detrimental to the electrical and magnetic properties of CZO powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Cai, A. Shui, X. Wang, C. He, J. Qian and B. Du, J. Alloys Compd., vol. 842, Article ID 155638 (2020).

  2. H. Qin, Z. Zhang, X. Liu, Y. Zhang, and J. Hu, J. Magn. Magn. Mater. 322, 1994–1998 (2010).

    Article  Google Scholar 

  3. Y. Keriti, R. Brahimi, Y. Gabes, S. Kaci, and M. Trari, Sol. Energy 206, 787–792 (2020).

    Article  Google Scholar 

  4. J. Wang, N. Du, H. Zhang, J. Yu, and D. Yang, J. Phys. Chem. C 115, 11302–11305 (2011).

    Article  Google Scholar 

  5. H.G. Na, D.S. Kwak, and H.W. Kim, Cryst. Res. Technol. 47, 79–86 (2012).

    Article  Google Scholar 

  6. L.C. Chen, C.M. Huang, C.S. Gao, G.W. Wang, and M.C. Hsiao, Chem. Eng. J. 175, 49–55 (2011).

    Article  Google Scholar 

  7. J.P. Li, F.Q. Sun, K.Y. Gu, T.X. Wu, W. Zhai, W.S. Li, and S.F. Huang, Appl. Catal. A 406, 51–58 (2011).

    Article  Google Scholar 

  8. S. Yun, T. Guo, Y. Li, X. Gao, A. Huang and L. Kang, Mater. Res. Bull., vol. 130, Article ID 110935 (2020).

  9. H.T. Hsueh, S.J. Chang, W.Y. Weng, C.L. Hsu, T.J. Hsueh, F.Y. Hung, S.L. Wu, and B.T. Dai, IEEE Trans. Nanotechnol. 11, 127–133 (2012).

    Article  Google Scholar 

  10. T.H. Liu, F.Y. Hung, T. Chien, and K.J. Chen, J. Mater. Sci. Mater. Electron. 31, 144–153 (2020).

    Article  Google Scholar 

  11. S. Sivasakthi and K. Gurunathan, Renew. Energy 159, 786–800 (2020).

    Article  Google Scholar 

  12. C.S. Dandeneau, Y.H. Jeon, C.T. Shelton, T.K. Plant, D.P. Cann, and B.J. Gibbons, Thin Solid Films 517, 4448–4454 (2009).

    Article  Google Scholar 

  13. T. Ghosh, M. Dutta, S. Mridha, and D. Basak, J. Electrochem. Soc. 156, 285–289 (2009).

    Article  Google Scholar 

  14. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, and Z. Xie, Appl. Surf. Sci. 256, 4162–4165 (2010).

    Article  Google Scholar 

  15. S.Y. Zhuo, X.C. Liu, Z. Xiong, J.H. Yang, and E.W. Shi, Solid State Commun. 152, 257–260 (2012).

    Article  Google Scholar 

  16. J.V. Bellini, M.R. Morelli, and R.H.G.A. Kiminami, Mater. Lett. 57, 3775–3778 (2003).

    Article  Google Scholar 

  17. S. Choopun, N. Hongsith and E. Wongrat, IntechOpen, 39506 (2010).

  18. K.J. Chen, F.Y. Hung, T.S. Lui, S.P. Chang, and W.L. Wang, Appl. Surf. Sci. 273, 598–602 (2013).

    Article  Google Scholar 

  19. R. Al-Gaashani, S. Radiman, N. Tabet, and A.R. Daud, J. Alloys Compd. 509, 8761–8769 (2011).

    Article  Google Scholar 

  20. L. Li, J.G. Lei, and T.H. Ji, Mater. Res. Bull. 46, 2084–2089 (2011).

    Article  Google Scholar 

  21. H. Kim, B. K. Lee, K. S. An and S. Ju, Nanotechnology, vol. 23, Article ID 045604 (2012).

  22. M.H. Chou, S.B. Liu, C.Y. Huang, S.Y. Wu, and C.L. Cheng, Appl. Surf. Sci. 254, 7539–7543 (2008).

    Article  Google Scholar 

  23. H.A. Weakliem, J. Chem. Phys. 36, 2117 (1962).

    Article  Google Scholar 

  24. T.R.N. Kutty and N. Raghu, Appl. Phys. Lett. 54, 1796–1798 (1989).

    Article  Google Scholar 

  25. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, and G. Cantwell, Appl. Phys. Lett. 81, 622 (2002).

    Article  Google Scholar 

  26. X. Chen, Z. Zhou, K. Wang, X. Fan, S. Hu, Y. Wang, and Y. Huang, Mater. Res. Bull. 44, 799–802 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yi Hung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TH., Hung, FY., Chen, CH. et al. Optical, Microstructure, and Electromagnetic Properties of (1 − x)ZnO − xCuO Powders Prepared Using Two-Stage Sintering and Direct Synthesis. JOM 73, 815–822 (2021). https://doi.org/10.1007/s11837-020-04532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04532-7

Navigation