Skip to main content

Advertisement

Log in

Leaching of Antimony from Stibnite Ore in KOH Solution for Sodium Pyroantimonate Production: Systematic Optimization and Kinetic Study

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work aims to shed light on the leaching kinetics of antimony from stibnite ore in potassium hydroxide (KOH) solution. Response surface methodology based on central composite design was used to investigate the effect of time, temperature, solid to liquid ratio (S/L), and KOH concentration as independent parameters on the leaching efficiency of antimony. According to the results, time shows the most significant effect on the leaching yield of antimony, followed by temperature. The optimum leaching condition was obtained at a KOH concentration of 0.5 mol/L, temperature of 25°C, S/L of 100 g/L, and time of 133 min, with an antimony leaching yield of 56.5%. Kinetic studies based on the shrinking core model illustrated that the diffusion process through the ash layer is the rate-limiting step, with an activation energy of 4.97 kJ mol−1. Finally, antimony was recovered from the leach liquor in the form of NaSb(OH)6. This study can pave the way for the development of new hydrometallurgical processes for antimony recovery from the sulfide minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Liu, H. Liu, D. Zhang, L. Chen, and T. Yang, JOM 71, 4631 (2019).

    Article  Google Scholar 

  2. R.S. Multani, T. Feldmann, and G.P. Demopoulos, Hydrometallurgy 164, 141 (2016).

    Article  Google Scholar 

  3. Ö. Gök, Hydrometallurgy 149, 23 (2014).

    Article  Google Scholar 

  4. B. Ren, Y. Zhou, H. Ma, R. Deng, P. Zhang, and B. Hou, J. Mater. Cycles Waste Manag. 20, 193 (2018).

    Article  Google Scholar 

  5. L. Ye, Z. Ouyang, Y. Chen, H. Wang, L. Xiao, and S. Liu, Sep. Purif. Technol. 228, 115753 (2019).

    Article  Google Scholar 

  6. Z. Ouyang, S. Liu, C. Tang, and Y. Chen, Y and L. Ye, Vacuum 159, 358 (2019).

    Article  Google Scholar 

  7. L. Ye, C. Tang, Y. Chen, S. Yang, J. Yang, and W. Zhang, J. Clean. Prod. 93, 134 (2015).

    Article  Google Scholar 

  8. W. Liu, H. Lou, W. Qing, Y. Zhemg, K. Yang, and J. Han, Metall. Mater. Trans. B 45, 1281 (2014).

    Article  Google Scholar 

  9. O. Celep, I. Alp, D. Paktunç, and Y. Thibault, Hydrometallurgy 108, 109 (2011).

    Article  Google Scholar 

  10. P. Baláž and M. Achimovičová, Int. J. Miner. Process. 81, 44 (2006).

    Article  Google Scholar 

  11. Y. Li, Z. Liu, Q. Li, F. Liu, and Z. Liu, Hydrometallurgy 166, 41 (2016).

    Article  Google Scholar 

  12. M. Çopur, A. Yartaşi, C. Özmetin, and M.M. Kocakerim, Chem. Biochem. Eng. Q. 15, 25 (2001).

    Google Scholar 

  13. L. Ye, Z. Ouyang, Y. Chen, and Y. Chen, Hydrometallurgy 186, 210 (2019).

    Article  Google Scholar 

  14. Q. Tian, H. Wang, Y. Xin, D. Li, and X. Guo, Hydrometallurgy 159, 126 (2016).

    Article  Google Scholar 

  15. L.H. Madkour and I.A. Salem, Hydrometallurgy 43, 265 (1996).

    Article  Google Scholar 

  16. F. Vegliò and S. Ubaldini, Eur. J. Miner. Process. Environ. Prot. 1, 103 (2001).

    Google Scholar 

  17. S. Ubaldini, F. Vegliò, P. Fornari, and C. Abbruzzese, Hydrometallurgy 57, 187 (2000).

    Article  Google Scholar 

  18. A. Dodangeh, M. Halali, M. Hakim, and M.R. Bakhshandeh, Int. J. Eng. Trans. B 27, 325 (2014).

    Google Scholar 

  19. P. Raschman and E. Sminčáková, Hydrometallurgy 113–114, 60 (2012).

    Article  Google Scholar 

  20. S.M.J. Mirazimi, F. Rashchi, and M. Saba, Sep. Purif. Technol. 116, 175 (2013).

    Article  Google Scholar 

  21. A. Khodaei, R. Bagheri, H.R. Madaah Hosseini, and E. Bagherzadeh, Eur. Polym. J. 120, 109197 (2019).

    Article  Google Scholar 

  22. A. Bohlouli, M.R. Afshar, M.R. Aboutalebi, and S.H. Seyedein, Int. J. Refract. Met. Hard Mater. 61, 107 (2016).

    Article  Google Scholar 

  23. B.C. Tanda, J.J. Eksteen, E.A. Oraby, and G.M. O’Connor, Miner. Eng. 135, 118 (2019).

    Article  Google Scholar 

  24. F. Kocan and U. Hicsonmez, Int. J. Miner. Metall. Mater. 26, 11 (2019).

    Article  Google Scholar 

  25. A. Sanino and O. Jerez, Trans. Nonferrous Met. Soc. China (English Ed.) 28, 177 (2018).

    Article  Google Scholar 

  26. S. Shogh, R. Mohammadpour, A. Iraji zad, and N. Taghavinia, Appl. Phys. A 119, 1283 (2015).

    Article  Google Scholar 

Download references

Funding

The funding was provided by 13967070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Zekavat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zekavat, M., Yoozbashizadeh, H. & Khodaei, A. Leaching of Antimony from Stibnite Ore in KOH Solution for Sodium Pyroantimonate Production: Systematic Optimization and Kinetic Study. JOM 73, 903–912 (2021). https://doi.org/10.1007/s11837-020-04531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04531-8

Navigation