Skip to main content
Log in

Evaluation and Modeling of Scrap Utilization in the Steelmaking Process

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The study of scrap melting provides data for increasing the scrap utilization rate. Here, an evaluation model is established to analyze the effect of each factor on scrap melting using statistical methods for the first time. Subsequently, the quantitative relationship between the influencing factors and melting parameters is obtained. Back propagation (BP) neural networks and multiple regression are used for predictions. For scrap melting controlled by carbon mass transfer when the bath temperature range is 1573–1723 K, the relative contribution of each parameter was mixing power > bath temperature > specific surface area > carbon content. The predicted values of the BP neural network are more accurate than those of multiple regression. The relative errors of average melting rate, average mass melting speed, and mass transfer coefficient of training sets are 14.02%, 13.95%, and 7.19%, respectively, which decrease by 22.71%, 47.22%, and 69.46%, respectively, compared with those of the regression equations after outliers are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.

Similar content being viewed by others

References

  1. F.M. Penz and J. Schenk, Steel Res. Int. 90, 1900124. (2019).

    Article  Google Scholar 

  2. E.M. Gol’dfarb and B.I. Sherstov, J. Eng. Phys. 18, 342. (1970).

    Article  Google Scholar 

  3. F.M. Penz, J. Schenk, R. Ammer, K. Pastucha, and B. Maunz, Metall. Ital. 11, 36. (2018).

    Google Scholar 

  4. A.K. Shukla, B. Deo, and D.G.C. Robertson, Metall. Mater. Trans. B 44, 1407. (2013).

    Article  Google Scholar 

  5. F.M. Penz, R.P. Tavares, and C. Weiss, Int. J. Heat Mass Trans. 138, 640. (2019).

    Article  Google Scholar 

  6. F.M. Penz, J. Schenk, and R. Ammer, Processess 7, 186. (2019).

    Article  Google Scholar 

  7. J. Li and N. Provatas, Metall. Mater. Trans. B 39, 268. (2008).

    Article  Google Scholar 

  8. H. Sun, Y. Liu, and C. Lin, Int. Congr. Sci. Technol. Steelmak. (2015).

  9. M. Gao, S.F. Yang, and Y.L. Zhang, Ironmak. Steelmak. https://doi.org/10.1080/03019233.2019.1659003 (2019).

    Article  Google Scholar 

  10. M. Gao, J.T. Gao, Y.L. Zhang, and S.F. Yang, JOM. https://doi.org/10.1007/s11837-020-04088-6 (2020).

    Article  Google Scholar 

  11. J.K. Wright, Metall. Trans. B 20, 363. (1989).

    Article  Google Scholar 

  12. Y.U. Kim and R. Pehlke, Metall. Trans. 5, 2527. (1974).

    Article  Google Scholar 

  13. H. Gaye, M. Wanin, P. Gugliermina, and P. Schittly, Rev. Metall. 82, 793. (1986).

    Article  Google Scholar 

  14. R.G. Olsson, V. Koump, and T.F. Perzak, Trans. Metall. Soc. AlME 263, 423. (1966).

    Google Scholar 

  15. S.L. Wu, M.Y. Kou, and J. Sun, Steel Res. Int. 85, 1552. (2014).

    Article  Google Scholar 

  16. A. Chaudhurya, R. Khatirkara, and N.N. Viswanathana, J. Magn. Magn. Mater. 313, 21. (2007).

    Article  Google Scholar 

  17. S.Y. Zhang, Y.P. Bao, and C.J. Zhang, Chin. J. Eng. 39, 511. (2017).

    Google Scholar 

  18. E. Sandberg, B. Lennox, and P. Undvall, Control Eng. Pract. 15, 1063. (2007).

    Article  Google Scholar 

  19. D.L. Mon, C.H. Cheng, and J.C. Lin, Fuzzy Set. Syst. 62, 127. (1994).

    Article  Google Scholar 

  20. C.C. Hung and L.H. Chen, Lect. Notes Eng. Comp. Sci. 2174, (2009).

  21. Y.S. Liu, J.P. Gao, and J.B. Zhang, J. Iron Steel Res. 2, 1. (1990).

    Google Scholar 

  22. Sasmita and J. Sahoo, Hydrogeol. J. 21, 1865. (2013).

    Article  Google Scholar 

  23. C.C. Hsu, J. Lin, and C.K. Chao, Comp. Methods Programm. Biomed. 104, 341. (2011).

    Article  Google Scholar 

  24. P. Gong and P. Gong, Photogramm. Eng. Remote Sens. 62, 513. (1996).

    Google Scholar 

  25. Y. Pao, Adaptive Pattern Recognition and Neural Networks (New York: Addison and Wesley, 1989), pp. 113–299.

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2019YFC1905701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ling Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Gao, J.T., Zhang, Y.L. et al. Evaluation and Modeling of Scrap Utilization in the Steelmaking Process. JOM 73, 712–720 (2021). https://doi.org/10.1007/s11837-020-04529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04529-2

Navigation