Skip to main content
Log in

Structural Characteristics of CaO-SiO2-Al2O3-FeO Slag with Various FeO Contents Based on Molecular Dynamics Simulations

  • Advances in Process Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used to theoretically calculate the structure and properties of the CaO-SiO2-Al2O3-FeO quaternary slag system with the aim of understanding the influence of the FeO content on the slag structure and properties. The radial distribution function, coordination number, diffusion coefficient, etc. are used to characterize the structural characteristics of the slag. Viscosity is one of the important physical properties in blast furnace ironmaking, having an important influence on the blast furnace oxidation metallurgy process. The results of this study indicate that, as the FeO content is increased, the network structure is destroyed, the diffusion coefficient of each atom increases, and the system viscosity decreases, indicating that the polymerization structure of the CaO-SiO2-Al2O3-FeO slag system tends to be depolymerized. Based on these results, FeO in blast furnace slag has a great influence on the structural characteristics of CaO-SiO2-Al2O3-FeO slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Wu, Q. Wang, C. Yu, and S. He, J. Non-Cryst. Solids 450, 23 (2016).

    Article  Google Scholar 

  2. Z. Wang, G. Wen, Q. Liu, S. Huang, P. Tang, and L. Yu, J. Non-Cryst. Solids 531, 119 (2020).

    Article  Google Scholar 

  3. L. Mongalo, A.S. Lopis, and G.A. Venter, J. Non-Cryst. Solids 452, 194 (2016).

    Article  Google Scholar 

  4. S. Sukenaga, T. Higo, H. Shibata, N. Saito, and K. Nakashima, ISIJ Int. 55, 1299 (2015).

    Article  Google Scholar 

  5. K. Mills, L. Yuan, Z. Li, G. Zhang, and K. Chou, High Temp. Mater. Process. 31, 301 (2012).

    Article  Google Scholar 

  6. A. Kondratiev and E. Jak, Metall. Mater. Trans. B 32, 1015 (2001).

    Article  Google Scholar 

  7. D.K. Belashchenko and O.I. Ostrovski, Inorg. Mater. 38, 799 (2002).

    Article  Google Scholar 

  8. Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, ISIJ Int. 44, 1283 (2004).

    Article  Google Scholar 

  9. Y. Liang, Y. Che, X. Liu, and N. Li, Manual of Thermodynamic Data for Inorganic Materials (Boston: Northeastern University Press, 1993).

    Google Scholar 

  10. D. Ye and J. Hu, Manual of Thermodynamic Data for Practical Inorganic Materials (Beijing: Metallurgical Industry Press, 2002).

    Google Scholar 

  11. Q. Shu, Steel Res. Int. 80, 107 (2009).

    Google Scholar 

  12. K. Jiao, J. Zhang, Z. Wang, C. Chen, and Y. Liu, Steel. Res. Int. 88, 1600296 (2017).

    Article  Google Scholar 

  13. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, ISIJ Int. 44, 1291 (2004).

    Article  Google Scholar 

  14. T. Li, C. Sun, S. Song, and Q. Wang, Metals 9, 9070743 (2019).

    Google Scholar 

  15. Q.-Q. Mou, J.-L. Li, Q. Zeng, and H.-Y. Zhu, Int. J. Miner. Metall. Mater. 26, 1113 (2019).

    Article  Google Scholar 

  16. P.A. Tanskanen, T. Paananen, and E.-P. Heikkinen, Pyrometallurgy. Co. Za (1994–2020).

  17. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, ISIJ Int. 44, 1291 (2006).

    Article  Google Scholar 

  18. X. Dai, J. Dai, D. Li, P. Yuan, T. Yan, L. Kong, and W. Li, J. Fuel Chem. Technol. 47, 641 (2019).

    Article  Google Scholar 

  19. D.K. Belashchenkoa, O.I. Ostrovskib, and L.V. Skvortsova, Thermochim. Acta 372, 153 (2001).

    Article  Google Scholar 

  20. W. She, Z. Liu, X. Chen, and J. Yang, China Metall. 29, 13 (2019).

    Google Scholar 

  21. Y.S. Lee, J.R. Kim, S.H. Yi, and D.J. Min, in VII International Conference on Molten Slags Fluxes and Salts (2004).

  22. T. Liu, Y. Li, C. Sun, and Q. Wang, J. Univ. Sci. Technol. Liaoning 40, 81 (2017).

    Google Scholar 

  23. T. Yoshioka, M. Asaeda, and T. Tsuru, J. Membrane Sci. 293, 81 (2007).

    Article  Google Scholar 

  24. W. Xuan, H. Wang, D. Xia, and J. Zhang, Energy Fuels 33, 10593–10601 (2019).

    Article  Google Scholar 

  25. S. Sukenaga, N. Saito, K. Kawakami, and K. Nakashima, ISIJ Int. 46, 352 (2006).

    Article  Google Scholar 

  26. X.S. Gang, L.Z. Mu, and L. Qing, Ironmaking 26, 59 (2007).

    Google Scholar 

  27. T. Zhifang, X. Cheng, and W. Zhanlong, Nonferr. Met. Sci. Eng. 7, 15 (2016).

    Google Scholar 

  28. M. Matsui, Phys. Chem. Miner. 23, 345 (1996).

    Article  Google Scholar 

  29. Y. Feng, J. Goree, B. Liu, and E.G. Cohen, Phys. Rev. E 84, 46 (2011).

    Google Scholar 

  30. B. Guillot and N. Sator, Geochim. Cosmochim. Acta 71, 1249 (2007).

    Article  Google Scholar 

  31. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  32. C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L.J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R.V. Zon, J. Phys: Conf. Ser. 256, 12 (2010).

    Google Scholar 

  33. M. Ponce, R. van Zon, S. Northrup, D. Gruner, J. Chen, F. Ertinaz, A. Fedoseev, L. Groer, F. Mao, B.C. Mundim, M. Nolta, J. Pinto, M. Saldarriaga, V. Slavnic, E. Spence, C.-H. Yu, and W.R. Peltier, in Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning), pp. 1–8 (2019).

  34. R.D. Shannon, Acta Cryst. 32, 751 (1976).

    Article  Google Scholar 

  35. W. Xuan, H. Wang, and D. Xia, Fuel Process. Technol. 187, 21 (2019).

    Article  Google Scholar 

  36. W. Xuan, H. Wang, and D. Xia, Fuel 242, 362 (2019).

    Article  Google Scholar 

  37. L. Jiang, Science and Technology B (Chemical, Metallurgical, Environmental, Mining) (2015).

  38. L. Wang, Y. Cui, J. Yang, C. Zhang, D. Cai, J. Zhang, Y. Sasaki, and O. Ostrovski, Steel Res. Int. 86, 670 (2015).

    Article  Google Scholar 

  39. K.C. Mills and S. Sridhar, Ironmak. Steelmak. 26, 262 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Chinese Fundamental Research Funds for the Central Universities (FRF-TP-20-005A2), National Natural Science Foundation for Young Scientists of China (51804025), National Natural Science Foundation of China (51974019 and 51774032), and National Key Research and Development Program of China (2017YFB0304300 and 2017YFB0304303). Computations were performed on the Niagara supercomputer at the SciNet HPC Consortium in the Compute/Calcul Canada national computing platform. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, Ontario Research Fund—Research Excellence, and the University of Toronto. The authors acknowledge technical support from Prof. Mansoor Barati of the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Li, K., Zhang, J. et al. Structural Characteristics of CaO-SiO2-Al2O3-FeO Slag with Various FeO Contents Based on Molecular Dynamics Simulations. JOM 73, 1637–1645 (2021). https://doi.org/10.1007/s11837-020-04511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04511-y

Navigation