Skip to main content

Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range

Abstract

The deformation behavior, microstructure, phase composition, and mechanical and functional properties of Ti-50.9 at.%Ni shape memory alloy during uniaxial compression in the temperature range from 25°C to 1000°C have been analyzed and are discussed herein. It was found that the deformation temperature of 300°C marked a boundary for the transition from the low- to high-temperature type of flow curves; achievement of the steady-state deformation stage was observed across a wide range of deformation temperatures. Following comprehensive analysis of the obtained data, the temperature ranges of the dynamic processes of recovery, polygonization, and recrystallization of the Ti-50.9 at.%Ni alloy were determined. Deformation in the range of dynamic polygonization is accompanied by not only the formation of B2-austenite and R-phase, but also the precipitation of fine Ti3Ni4 particles during deformational aging. The highest shape recovery characteristics were obtained after deformation of the Ti-50.9 at.%Ni alloy in the temperature range from 300°C to 600°C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    T.W. Duerig, K.N. Melton, D. Stôckel, and C.M. Wayman, Engineering Aspects of Shape Memory Alloys, 1st ed. (London: Butterworth-Heinemann, 1990), p. 499.

    Google Scholar 

  2. 2.

    B. Culshaw, Smart Structures and Materials (Boston: Artech House, 1996), p. 207.

    Google Scholar 

  3. 3.

    K. Otsuka and X. Ren, Intermetallics 7, 511–528 (1999).

    Article  Google Scholar 

  4. 4.

    V. Brailovski, S. Prokoshkin, P. Terriault, and P. Trochu, Shape Memory Alloys: Fundamentals, Modeling and Applications (Montreal: ETS, 2003), p. 851.

    Google Scholar 

  5. 5.

    J.M. Jany, M. Leary, A. Subic, and M.A. Gibson, Mater. Des. 56, 1078–1113 (2014).

    Article  Google Scholar 

  6. 6.

    N. Resnina and V. Rubanik, Shape Memory Alloys: Properties, Technologies, Opportunities (Praffikon: Trans Tech, 2015), p. 641.

    Google Scholar 

  7. 7.

    B.S. Shariat, Q. Meng, A.S. Mahmud, Z. Wu, R. Bakhtiari, J. Zhang, and Y. Liu, Mater. Des 124, 225–237 (2017).

    Article  Google Scholar 

  8. 8.

    Sun, Q., Matsui, R., Takeda, K., Pieczyska, E, Advances in Shape Memory Materials: In Commemoration of the Retirement of Professor Hisaaki Tobushi. (New York, NY: Springer, 2017), p. 241.

  9. 9.

    Gunther V.E., Hodorenko V.N., Yasenchuk Y.F., Chekalkin T.L, Titanium Nickelide. Medical Supplies of the New Generation. (Tomsk: Publishing House of the MIC, 2006), p. 296.

  10. 10.

    S.D. Prokoshkin, L.M. Kaputkina, and S.A. Bondareva, Phys. Met. Metallogr. 3, 144–149 (1991).

    Google Scholar 

  11. 11.

    S. Miyazaki and K. Otsuka, ISIJ Int. 29, 353–377 (1979).

    Article  Google Scholar 

  12. 12.

    T. Todoroki and H. Tamura, Trans. Jpn. Inst. Met 28, 83–94 (1987).

    Article  Google Scholar 

  13. 13.

    S. Miyazaki, T. Imai, and Y. Igo, Metall. Trans. A 17, 115–120 (1986).

    Article  Google Scholar 

  14. 14.

    Y. Liu and P.G. McCormick, ISIJ Int. 29, 417–422 (1989).

    Article  Google Scholar 

  15. 15.

    V. Brailovski, I.Y. Khmelevskaya, S.D. Prokoshkin, V.G. Pushin, E.P. Ryklina, and R.Z. Valiev, Phys. Met. Metallogr. 97, 3–55 (2004).

    Google Scholar 

  16. 16.

    S.D. Prokoshkin, V. Brailovski, I.Y. Khmelevskaya, S. Dobatkin, K. Inaekyan, V. Demers, and E. Tatyanin, Met. Sci. Heat Treat 47, 182–187 (2005).

    Article  Google Scholar 

  17. 17.

    V. Brailovski, S. Prokoshkin, I. Khmelevskaya, K. Inaekyan, V. Demers, S. Dobatkin, and E. Tatyanin, Mater. Trans. JIM 47, 795–804 (2006).

    Google Scholar 

  18. 18.

    S.D. Prokoshkin, V. Brailovski, K.E. Inaekyan, V. Demers, I.Y. Khmelevskaya, S.V. Dobatkin, and E.V. Tatyanin, Mater. Sci. Eng. A 481, 114–118 (2008).

    Article  Google Scholar 

  19. 19.

    V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, J. Alloys Compd. 509, 2066–2075 (2011).

    Article  Google Scholar 

  20. 20.

    R.Z. Valiev and I.V. Aleksandrov, Nanostructural Materials Obtained by Severe Plastic Deformation (Moscow: Integratsiya, 2000), p. 272.

    Google Scholar 

  21. 21.

    R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci 51, 881–981 (2006).

    Article  Google Scholar 

  22. 22.

    A.I. Lotkov, V. Grishkov, O. Kashin, A. Baturin, D. Zhapova, and V. Timkin, Mater. Sci. Found 81, 245–259 (2015).

    Article  Google Scholar 

  23. 23.

    A.I. Lotkov, V.N. Grishkov, E.F. Dudarev, Y.N. Koval, N.V. Girsova, O.A. Kashin, and D.Y. Zhapova, Inorg. Mater. Appl. Res 2, 548–555 (2011).

    Article  Google Scholar 

  24. 24.

    IYu Khmelevskaya, R.D. Karelin, S.D. Prokoshkin, V.A. Andreev, V.S. Yusupov, M.M. Perkas, V.V. Prosvirnin, A.E. Shelest, and V.S. Komarov, Phys. Met. Metallogr 118, 279–287 (2017).

    Article  Google Scholar 

  25. 25.

    V. Komarov, I. Khmelevskaya, R. Karelin, S. Prokoshkin, M. Zaripova, M. Isaenkova, G. Korpala, and R. Kawalla, J. Alloys Compd 797, 842–848 (2019).

    Article  Google Scholar 

  26. 26.

    I. Khmelevskaya, V. Komarov, R. Kawalla, S. Prokoshkin, and G. Korpala, J. Mater. Eng. Perform 26, 4011–4019 (2017).

    Article  Google Scholar 

  27. 27.

    I. Khmelevskaya, V. Komarov, R. Kawalla, S. Prokoshkin, and G. Korpala, Mater. Today Proc. 4, 4830–4835 (2017).

    Article  Google Scholar 

  28. 28.

    S. Prokoshkin, I. Khmelevskaya, V. Andreev, R. Karelin, V. Komarov, and A. Kazakbiev, Mater. Sci. Forum 918, 71–76 (2018).

    Article  Google Scholar 

  29. 29.

    S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I.Y. Khmelevskaya, and I.B. Trubitsina, Acta Mater 52, 4479–4492 (2004).

    Article  Google Scholar 

  30. 30.

    V.A. Likhachev, S.L. Kuzmin, and Z.P. Kamentseva, Shape memory effect (Saint-Petersburg: Saint-Petersburg University Publishing House, 1987), p. 216.

    Google Scholar 

  31. 31.

    S. Prokoshkin, V. Brailovski, A.V. Korotitskiy, K.E. Inaekyan, and A.M. Glezer, Phys. Met. Metallogr 110, 289–303 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR (Project No. 19-33-60090) and part of the TEM and X-ray analyses by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task (Project Code 0718-2020-0030).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor Komarov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komarov, V., Khmelevskaya, I., Karelin, R. et al. Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range. JOM 73, 620–629 (2021). https://doi.org/10.1007/s11837-020-04508-7

Download citation