Skip to main content
Log in

Ultrasound-Assisted Leaching of Iron from Silicon Diamond-Wire Saw Cutting Waste

  • Powder Materials for Energy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Iron removal from silicon powder waste by ultrasound-assisted leaching has been investigated and the leaching conditions optimized to an ultrasonic frequency of 80 kHz, ultrasonic power of 270 W, temperature of 60°C, and sulfuric acid concentration of 12%, achieving an iron removal fraction of 95.24%. The maximum iron removal fraction was obtained after 80 min of leaching without ultrasound, whereas ultrasound-assisted leaching could achieve the same removal fraction after 50 min under the same conditions. The dissolution of iron is a two-step process and follows a homogeneous control model with a second-order rate-controlling step. With the aid of ultrasound, the reaction rate constants khs increased from 0.0677–0.0995 to 0.0792–0.1914 and from 0.0285–0.1086 to 0.0399–0.1422 in the first and second leaching stage, respectively. This increase of the khs values further supports the enhancement induced by the application of ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Mussard, Renew. Sustain. Energy Rev. 74, 733 (2017).

    Google Scholar 

  2. A. Ramos, W.O. Filtvedt, D. Lindholm, P.A. Ramachandran, A. Rodríguez, and C. del Cañizo, J. Cryst. Growth 431, 1 (2015).

    Google Scholar 

  3. K. Sun, S. Shen, Y. Liang, P.E. Burrows, S.S. Mao, and D. Wang, Chem. Rev. 114, 8662 (2014).

    Google Scholar 

  4. F. Cao, K.X. Chen, J.J. Zhang, X.Y. Ye, J.J. Li, S. Zou, and X.D. Su, Sol. Energy Mater. Sol. Cells 141, 132 (2015).

    Google Scholar 

  5. J. Kong, P.F. Xing, Y. Liu, J.Q. Wang, X. Jin, Z.B. Feng, and X.T. Luo, Silicon 11, 367 (2019).

    Google Scholar 

  6. Z.Y. Shen, C.Y. Chen, and M.T. Lee, J. Hazard. Mater. 362, 115 (2019).

    Google Scholar 

  7. Y.C. Lin and C.Y. Tai, Sep. Purif. Technol. 74, 170 (2010).

    Google Scholar 

  8. T.H. Tsai, J. Hazard. Mater. 189, 526 (2011).

    Google Scholar 

  9. Y.F. Wu and Y.M. Chen, Sep. Purif. Technol. 68, 70 (2009).

    Google Scholar 

  10. T.H. Tsai, Sep. Purif. Technol. 78, 16 (2011).

    Google Scholar 

  11. T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, and C.W. Lan, J. Cryst. Growth 310, 3403 (2008).

    Google Scholar 

  12. Y. Liu, J. Kong, Y.X. Zhuang, P.F. Xing, H.Y. Yin, and X.T. Luo, J. Clean. Prod. 224, 709 (2019).

    Google Scholar 

  13. X. Li, J.J. Wu, M. Xu, and W.H. Ma, J. Clean. Prod. 211, 695 (2019).

    Google Scholar 

  14. H.Y. Wang, Y. Tan, J.Y. Li, Y.Q. Li, and W. Dong, Sep. Purif. Technol. 89, 91 (2012).

    Google Scholar 

  15. T.Y. Wang, Y.C. Lin, C.Y. Tai, C.C. Fei, M.Y. Tseng, and C.W. Lan, Prog. Photovolt. Res. Appl. 17, 155 (2009).

    Google Scholar 

  16. Y.C. Lin, T.Y. Wang, C.W. Lan, and C.Y. Tai, Powder Technol. 200, 216 (2010).

    Google Scholar 

  17. K. Tomono, H. Furuya, S. Miyamoto, Y. Okamura, M. Sumimoto, Y. Sakata, K. Ryuichi, and N. Masaharu, Sep. Purif. Technol. 103, 109 (2013).

    Google Scholar 

  18. S.A. Sergiienko, B.V. Pogorelov, and V.B. Daniliuk, Sep. Purif. Technol. 133, 16 (2014).

    Google Scholar 

  19. B. Meinel, T. Koschwitz, and J. Acker, Energy Procedia 27, 330 (2012).

    Google Scholar 

  20. M.D. Sousa, A. Vardelle, G. Mariaux, M. Vardelle, U. Michon, and V. Beudin, Sep. Purif. Technol. 161, 187 (2016).

    Google Scholar 

  21. M. Maeda, K. Imamura, T. Matsumoto, and H. Kobayashi, Appl. Surf. Sci. 312, 39 (2014).

    Google Scholar 

  22. S.C. Yang, W.H. Ma, K.X. Wei, K.Q. Xie, and Z. Wang, Sep. Purif. Technol. 228, 115754 (2019).

    Google Scholar 

  23. T. Lu, Y. Tan, J.Y. Li, and S. Shi, J. Hazard. Mater. 379, 120796 (2019).

    Google Scholar 

  24. T. Lu, Y. Tan, J.Y. Li, and D.W. Deng, J. Clean. Prod. 203, 574 (2018).

    Google Scholar 

  25. L.Q. Huang, A. Danaei, M. Fang, S. Thomas, X.T. Luo, and M. Barati, Vacuum 163, 164 (2019).

    Google Scholar 

  26. K. Tomono, S. Miyamoto, T. Ogawa, H. Furuya, Y. Okamura, M. Yoshimoto, R. Komatsu, and M. Nakayama, Sep. Purif. Technol. 120, 304 (2013).

    Google Scholar 

  27. C.Y. Chou, J.R. Kuo, and S.C. Yen, ACS Sustain. Chem. Eng. 6, 4759 (2018).

    Google Scholar 

  28. T.Y. Huang, B. Selvaraj, H.Y. Lin, H.S. Sheu, Y.F. Song, C.C. Wang, B.J. Hwang, and N.L. Wu, ACS Sustain. Chem. Eng. 4, 5769 (2016).

    Google Scholar 

  29. H.G. Tan and J.G. Duh, J. Power Sources 335, 146 (2016).

    Google Scholar 

  30. L.Q. Huang, J. Chen, M. Fang, S. Thomas, A. Danaei, X.T. Luo, and M. Barati, J. Clean. Prod. 186, 718 (2018).

    Google Scholar 

  31. V.P. Miguel, S.C. Tandeep, G. Yablonsky, F.E. Henry, and B. Pratim, Ind. Eng. Chem. Res. 54, 5914 (2015).

    Google Scholar 

  32. S.C. Yang, K.X. Wei, W.H. Ma, K.Q. Xie, J.J. Wu, and Y. Lei, J. Hazard. Mater. 368, 1 (2019).

    Google Scholar 

  33. H.L. Yang, I.T. Liu, C.E. Liu, H.P. Hsu, and C.W. Lan, Waste Manag 84, 204 (2019).

    Google Scholar 

  34. J. Kong, X. Jin, Y. Liu, D.H. Wei, S.N. Jiang, S.B. Gao, Z.B. Feng, P.F. Xing, and X.T. Luo, Sep. Purif. Technol. 221, 261 (2019).

    Google Scholar 

  35. Y.G. Adewuyi, Ind. Eng. Chem. Res. 40, 4681 (2001).

    Google Scholar 

  36. X. Li, P.F. Xing, X.H. Du, S.B. Gao, and C. Chen, Ultrason. Sonochem. 38, 84 (2017).

    Google Scholar 

  37. F.H. Du, J.S. Li, X.X. Li, and Z.Z. Zhang, Ultrason. Sonochem. 18, 389 (2011).

    Google Scholar 

  38. J.Q. Wang, P.F. Xing, X.H. Du, X.T. Luo, Y.X. Zhuang, T. Lyu, and X. Dong, Silicon 9, 265 (2017).

    Google Scholar 

  39. G.H. Xia, M. Lu, X.L. Su, and X.D. Zhao, Ultrason. Sonochem. 19, 38 (2012).

    Google Scholar 

  40. L.J. Xu, W. Chu, and N. Graham, Ultrason. Sonochem. 20, 892 (2013).

    Google Scholar 

  41. P.F. Xing, J.Q. Wang, T. Lyu, Y.X. Zhuang, X.H. Du, and X.T. Luo, Sep. Purif. Technol. 151, 251 (2015).

    Google Scholar 

  42. S.S. Behera and P.K. Parhi, Sep. Purif. Technol. 160, 59 (2016).

    Google Scholar 

  43. S. Dey and V.K. Rathod, Ultrason. Sonochem. 20, 271 (2013).

    Google Scholar 

  44. L. Wang, Z. Long, X. Huang, Y. Yu, D. Cui, and G. Zhang, Hydrometallurgy 101, 41 (2010).

    Google Scholar 

  45. P.K. Parhi, K.H. Park, and G. Senanayake, J. Ind. Eng. Chem. 19, 589 (2013).

    Google Scholar 

  46. O. Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant Nos. 2018YFC1901804 and 2018YFC1901805) and the National Natural Science Foundation of China (Grant Nos. 21978045 and U1902219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Xing.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Xing, P., Wei, D. et al. Ultrasound-Assisted Leaching of Iron from Silicon Diamond-Wire Saw Cutting Waste. JOM 73, 791–800 (2021). https://doi.org/10.1007/s11837-020-04497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04497-7

Navigation