Skip to main content

Cyrtrandroemia nicobarica-Synthesized ZnO NRs: A New Tool in Cancer Treatment

Abstract

There has been a developing interest in the green-mediated synthesis of metal nanorods (NRs), especially from plants. However, there is no published report on the synthesis of ZnO NRs prepared via Cyrtrandroemia nicobarica leaf extract. The formation of ZnO NRs was confirmed by using x-ray diffraction, a Fourier transform infrared spectrometer, Brunauer–Emmett–Teller analysis, scanning electron microscope-energy-dispersive x-ray spectroscopy, and transmission electron microscopy analyses. The result revealed that the acquired ZnO NRs contain a unique surface area and excellent particle size. The photocatalytic and antioxidant activities of ZnO NRs were also evaluated in this study. The toxic nature of the obtained ZnO NRs was analyzed using the Daniorerio model, and the results showed that it was nontoxic. The anticancer activity of ZnO NRs was also analyzed using a human lung cancer cell line (A549), and excellent results were observed about the cancer cell death pathway. Hence, it was confirmed that the acquired ZnO NRs were nontoxic and had magnificent antibacterial and antioxidant activities. They can be used as an anticancer drug for health-care implementations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L.S. Rebecca, D.M.P. Kimberly, and D.V.M.A. Jemal, CA Cancer J. Clin. 121, 5 (2020).

    Google Scholar 

  2. W.J. Curran, R. Paulus, and C.J. Langer, J. Natl Cancer Inst. 103, 1460 (2011).

    Article  Google Scholar 

  3. X. Li, P. Kabolizadeh, and D. Yan, Radiat. Oncol. 13, 35 (2018).

    Article  Google Scholar 

  4. R. Sinha, G.J. Kim, and S. Nie, Mol. Cancer Ther. 5, 1917 (2006).

    Article  Google Scholar 

  5. T. Mosmann, J. Immunol. Methods 65, 63 (1983).

    Article  Google Scholar 

  6. T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, and A. Varma, J. Nanopart. Res. 17, 288 (2015).

    Article  Google Scholar 

  7. M. Zare, K. Namratha, S. Alghamdi, Y.H.E. Mohammad, A. Hezam, M. Zare, Q.A. Drmosh, K. Byrappa, B.N. Chandrashekar, S. Ramakrishna, and X. Zhang, Sci. Rep. 9, 8303 (2019).

    Article  Google Scholar 

  8. F.T. Thema, M. Elayaperumal, M. Maaza, and M.S. Dhlamini, Mater. Lett. 18, 287 (2015).

    Google Scholar 

  9. M. Shaalan, M. Saleh, M. El-Mahdy, and M. El-Matbouli, Nanomedicine 12, 710 (2016).

    Google Scholar 

  10. S.P. Mathew, J. Econ. Taxon. Bot. 22, 272 (1998).

    Google Scholar 

  11. L.J. Singh, C. Murugan and P. Singh, Int. J. Curr. Res. Biosci. Plant Biol. 23, 57 (2014).

  12. V. Sekar, B. vaseeharan, B. Malaikozhundan, and M. Shobiya, Biomed. Pharmacother. 23, 84 (2016).

    Google Scholar 

  13. H.A. Kiwaan, T.M. Atwee, E.A. Azab, and A.A. El-Bindary, J. Mol. Struct. 1200, 127115 (2020).

    Article  Google Scholar 

  14. A.A. El-Bindary, S.M. EI-Marsafy, and A.A. EI-Maddah, J. Mol. Struct. 1194, 84 (2019).

    Google Scholar 

  15. G. Karunakaran, M. Jagathambal, N.V. Minh, E. Kolesnikov, and D. Kuznetsov, JOM 70, 1343 (2018).

    Google Scholar 

  16. R. Suriyaprabha and V. Rajendran, Artif. Cells Nanomed Biotechnol. 46, 1424 (2018).

    Google Scholar 

  17. G. Karunakaran, M. Jagathambal, A. Gusev, E. Kolesnikov, A.R. Mandal, and D. Kuznetsov, JOM 6, 46 (2016).

    Google Scholar 

  18. G. Karunakaran, M. Jagathambal, A. Gusev, E. Kolesnikov, A.R. Mandal, and D. Kuznetsov, Powder Technol. 305, 494 (2017).

    Article  Google Scholar 

  19. N. Siti, M.S. Amalina, S. Kamyar, T. Wong, S.Y. Teow, J. Chew, and N.A. Ismail, J. Mol. Struct. 1189, 65 (2019).

    Google Scholar 

  20. R. Anitha, K.V. Ramesh, T.N. Ravishankar, K.H. Sudheer Kumar, and T. Ramakrishnappa, Adv. Mater. Devices 3, 451 (2018).

    Google Scholar 

  21. V. Shah, B. Bharatiya, M. Mishra, D. Ray, and D. Shah, J. Mol. Liq. 273, 222–230 (2019).

    Article  Google Scholar 

  22. G. Karunakaran, R. Suriyaprabha, P. Manivasakan, R. Yuvakkumar, V. Rajendran, and N. Kannan, Ecotoxicol. Environ. Saf. 93, 197 (2013).

    Article  Google Scholar 

  23. M. Ovais, A.T. Khalil, A. Raza, M.A. Khan, I. Ahmad, U. Nazar, S. Saravanan, M. Ubaid, M. Ali, and Z.K. Shinwari, Int. J. Pharm. Chem. Biol. Sci. 4, 111 (2014).

    Google Scholar 

  24. T.P. Dasari, K. Pathakoti, and H.M. Hwang, J. Environ. Sci. 25, 888 (2013).

    Google Scholar 

  25. M. Stępnik, J. Arkusz, P.A. Smok, A. Bratek-Skicki, A. Salvati, L.I. Lynch, A. Kenneth, M. Dawson, J. Gromadzińska, H. Wim, D. Jong, and K. Rydzyński, Toxicol. Appl. Pharmacol. 263, 101 (2012).

    Article  Google Scholar 

  26. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, and A. Varma, Mat. Sci. Semicon. Proc. 32, 55 (2015).

    Article  Google Scholar 

  27. A. Moawad, M. Hetta, J.K. Zjawiony, M.R. Jacob, M. Hifnawy, J.P. Marais, and D. Ferreira, Planta Med. 76, 802 (2010).

    Article  Google Scholar 

  28. E. Karakose and H. Çolak, Energ. J. 140, 92 (2017).

    Article  Google Scholar 

  29. P. Vishnukumar, S. Vivekanandhan, and S.M. Misra, Mat. Sci. Semicon. Proc. 80, 143 (2018).

    Article  Google Scholar 

  30. S. Alarifi, D. Ali, S. Alkahtani, and M.S. Alhader, Biol. Trace Elem. Res. 159, 424 (2014).

    Article  Google Scholar 

  31. A. Lak, M. Mazloumi, M.S. Mohajerani, S. Zanganeh, M.R. Shayegh, A. Kajbafvala, and H. Arami, J. Am. Ceram. Soc. 91, 3584 (2008).

    Google Scholar 

  32. R. Vani, S.B. Raja, T.S. Sridevi, K. Savithri, S.N. Devaraj, E.K. Girija, A. Thamizhavel, and S.N. Kalkura, Nanotechnology 22, 285701 (2011).

    Article  Google Scholar 

  33. A.A. Khan, A. Vladimir, and A. Fonoberov, J. Appl. Phys. 97, 313 (2005).

    Google Scholar 

  34. H. Liu, L. Zhong, S. Govindaraj, and K. Yuna, J. Phys. Chem. Solids 129, 53 (2019).

    Google Scholar 

  35. B. Sonik and V. Neha, Mater. Res. Bull. 95, 476 (2017).

    Google Scholar 

  36. K.W. Ng, S.P.K. Khoo, B.C. Heng, M.I. Setyawati, E.C. Tan, X. Zhao, S. Xiong, W. Fang, D.T. Leong, and J.S.C. Loo, Biomaterials 32, 8225 (2011).

    Google Scholar 

  37. D. Xiong, T. Fang, L. Yu, X. Sima, and W. Zhu, Sci. Total Environ. 409, 1452 (2011).

    Article  Google Scholar 

  38. G.S. Kumar, E.K. Girija, M. Venkatesh, G. Karunakaran, E. Kolesnikov, and D. Kuznetsov, Ceram. Int. 43, 3461 (2017).

    Google Scholar 

  39. G.S. Kumar, S. Rajendran, S. Karthi, R. Govindan, E.K. Girija, G. Karunakaran, and D. Kuznetsov, MRS. Commun. 7, 188 (2017).

    Google Scholar 

  40. J. Liu, K. Li, H. Wang, M. Zhu, and H. Yan, Chem. Phys. Lett. 396, 432 (2004).

    Article  Google Scholar 

  41. G. Karunakaran, M. Jagathambal, A. Gusev, N.V. Minh, E. Kolesnikov, A.R. Mandal, and D. Kuznetsov, IET Nanobiotechnol. 10, 425 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the management of K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Tamil Nadu, for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Prasanna Rajeshkumar.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1329 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sudha, K.G., Ali, S., Karunakaran, G. et al. Cyrtrandroemia nicobarica-Synthesized ZnO NRs: A New Tool in Cancer Treatment. JOM 73, 364–372 (2021). https://doi.org/10.1007/s11837-020-04486-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04486-w