Skip to main content
Log in

Electrical and Optical Properties of Well-Aligned Ho3+-Doped ZnO Nanorods as an Alternative Transparent Conducting Oxide

  • Zinc Oxide Nanotechnology
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the impacts of doping concentration on the crystal structure, morphology, electrical, and optical properties of Ho3+-doped zinc oxide (ZnO) nanorod (NR) arrays were studied. Structural and morphological characterizations showed that the Ho3+-doped ZnO NRs were crystallized in the (002) direction, and that they had a homogeneous distribution on the substrate. The crystallite sizes of the samples were between 50 nm and 65 nm. SEM analysis showed that every sample was hexagonal in shape. For the 1 and 5 mol.% Ho3+-doped ZnO NRs, the values for electrical conductivity were found to be 1.41 × 10−7 and 8.29 × 10−6 (Ω cm)−1 at 25°C and 1.70 × 10−5 and 1.24 × 10−3 (Ω cm)−1 at 300°C, respectively. The optical transmittances were between 80 and 93% for all the samples in the region from 400 to 1000 nm. The optical band gap values were determined to be between 3.180 and 3.195 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.G. Lewis and D.C. Paine, MRS Bull. 25, 22 (2011).

    Article  Google Scholar 

  2. D.S.Y. Jayathilake and T.A. Nirmal Peiris, SF. J. Mater. Chem. Eng. 1, 1004 (2018).

  3. C.G. Granqvist and A. Hultaker, Thin Solid Films 411, 1 (2002).

    Article  Google Scholar 

  4. T. Minami, Thin Solid Films 516, 1314 (2008).

    Article  Google Scholar 

  5. A.A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

  6. V. Kumari, V. Kumar, B.P. Malik, R.M. Mehra, and D. Mohan, Opt. Commun. 285, 2182 (2012).

    Article  Google Scholar 

  7. R.A. Mereu, A. Mesaros, M. Vasilescu, M. Popa, M.S. Gabor, L. Ciontea, and T. Petrisor, Ceram. Int. 39, 5535 (2013).

    Article  Google Scholar 

  8. A. Hastir, N. Kohli, and R.C. Singh, J. Phys. Chem. Solid. 105, 23 (2017).

    Article  Google Scholar 

  9. H.Y. He, J. Fei, and J. Lu, J. Nanostruct. Chem. 5, 169 (2015).

    Article  Google Scholar 

  10. P. Pandey, R. Kurchania, and F.Z. Haque, Opt. Spectrosc. 119, 666 (2015).

    Article  Google Scholar 

  11. A. Albert Manoharan, R. Chandramohan, K. Deva Arun Kumar, S. Valanarasu, V. Ganesh, M. Shkir, H. Algarni and S. AlFaify, J. Mater. Sci. Mater. Electron. 29, 13077 (2018).

  12. M. Zafar, B.S. Kim, and D.H. Kim, Mater. Chem. Phys. 240, 12207 (2020).

    Article  Google Scholar 

  13. H. Çolak, J. Mater. Sci. Mater. Electron. 26, 784 (2015).

    Article  Google Scholar 

  14. H. Çolak and E. Karaköse, J. Rare Earth 36, 1067 (2018).

    Article  Google Scholar 

  15. H. Çolak and E. Karaköse, Mater. Sci. Semicond. Process. 101, 230 (2019).

    Article  Google Scholar 

  16. S. Singh, J.N. Divya Deepthi, B. Ramachandran and M.S. Ramachandra Rao, Mater. Lett. 65, 2930 (2011).

  17. M. Akyol, A. Ekicibil, and K. Kiymaç, J. Supercond. Nov. Magn. 26, 3257 (2013).

    Article  Google Scholar 

  18. A. Ekicibil, Solid State Sci. 14, 1486 (2012).

    Article  Google Scholar 

  19. A. Franco Jr and H.V. Pessoni, Mater. Lett. 180, 305 (2016).

    Article  Google Scholar 

  20. A. Phuruangrat, O. Yayapao, T. Thongtem, and S. Thongtem, Superlattices Microstruct. 67, 118 (2014).

    Article  Google Scholar 

  21. S. Yilmaz, S. Garryb, E. McGlynnb, and E. Bacaksiz, Ceram. Int. 40, 7753 (2014).

    Article  Google Scholar 

  22. S. Aydin and G. Turgut, Appl. Phys. A 125, 622 (2019).

    Article  Google Scholar 

  23. B. Panigrahy, M. Aslami, D.S. Misra, and D. Bahadur, Int. J. Nanosci. 10, 629 (2011).

    Article  Google Scholar 

  24. P. Ruankham, T. Sagawa, H. Sakaguchi, and S. Yoshikawa, J. Mater. Chem. 21, 9710 (2011).

    Article  Google Scholar 

  25. R.C. Weast, Handbook of Chemistry and Physics, 56th ed. (New York: CRC Press, 1975–1976), pp. 198–199.

  26. A. Petterson, Phys. Rev. 56, 978 (1939).

    Article  Google Scholar 

  27. G. Kartopu, V. Barrioz, S.J.C. Irvine, A.J. Clayton, S. Monir, and D.A. Lamb, Thin Solid Films 558, 374 (2014).

    Article  Google Scholar 

  28. M. Babiker, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu, and S. Jiao, Nanoscale Res. Lett. 9, 199 (2014).

    Article  Google Scholar 

  29. S. Yilmaz, J. Semicond. 36, 082001 (2015).

    Article  Google Scholar 

  30. H. Çolak, Kovove Mater. 54, 107 (2016).

    Article  Google Scholar 

  31. A.R. West, Solid State Chemistry and Its Applications (New York: Wiley, 1984).

    Google Scholar 

  32. J.B. Lee, H.J. Le, S.H. Seo, and J.S. Park, Thin Solid Films 398–399, 641 (2001).

    Article  Google Scholar 

  33. A. Sawalha, M. Abu-Abdeen, and A. Sedky, Phys. B 404, 1316 (2009).

    Article  Google Scholar 

  34. A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, and R.Y. Borse, Optoelectron. Adv. Mat. 3, 879 (2009).

    Google Scholar 

  35. J. Tauc, Mater. Res. Bull. 3, 37 (1968).

    Article  Google Scholar 

  36. S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, and M.M. Miranda, J. Lumin. 145, 132 (2014).

    Article  Google Scholar 

  37. G. Tang, H. Liu and W. Zhang, Adv. Mater. Sci. Eng. Article ID 348601 (2013).

Download references

Acknowledgements

This research was financially supported by TUBITAK (The Scientific and Technological Research Council of Turkey) (Project No. 114Z572); and Çankırı Karatekin University (Project No. BAP, FF28015B12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Çolak.

Ethics declarations

Conflict of interest

The authors whose names are listed immediately below certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çolak, H., Karaköse, E. Electrical and Optical Properties of Well-Aligned Ho3+-Doped ZnO Nanorods as an Alternative Transparent Conducting Oxide. JOM 73, 395–403 (2021). https://doi.org/10.1007/s11837-020-04483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04483-z

Navigation