Experimental Determination of Phase Equilibria in the REM2O3-SiO2 (REM = Y/Yb/La) Systems at Elevated Temperature

Abstract

Phase relations in the REM2O3-SiO2 (REM = Y/Yb/La) systems have been studied using the equilibration/quenching/scanning electron microscopy (SEM)-electron probe microanalysis (EPMA) technique. The solvus and liquidus between 1400°C and 1650°C have been determined. The results obtained in this study show that a maximum of 0.57 wt.% Yb2O3 can dissolve in SiO2 phase, while the maximum solubility of La2O3 and Y2O3 in SiO2 phase was 0.22 wt.% and 0.07 wt.%, respectively. Correspondingly, SiO2 shows low solubility in La2Si2O7, and nearly does not dissolve in Y2Si2O7 or Yb2Si2O7. No liquid phase was detected in the Y2O3-SiO2 or Yb2O3-SiO2 system in the temperature range of interest. One oxide liquid phase comprising 39.27 wt.% SiO2 and 59.07 wt.% La2O3 was found in the La2O3-SiO2 system sample equilibrated at 1653°C, revealing that the eutectic point temperature between La2Si2O7 and SiO2 is located between 1600°C and 1653°C. Results of this study were compared with previous observations, revealing significant differences.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    K.M. Goodenough, F. Wall, and D. Merriman, Nat. Resour. Res. 27, 201 (2018).

    Article  Google Scholar 

  2. 2.

    V. Balaram, Geosci. Front. 10, 1285 (2019).

    Article  Google Scholar 

  3. 3.

    F. Liu, A. Porvali, P. Halli, B.P. Wilson, and M. Lundstrom, JOM 72, 806 (2020).

    Article  Google Scholar 

  4. 4.

    H. Nawshad, H. Anthony, L. Seng, and V. Chris, Resources 3, 614 (2014).

    Article  Google Scholar 

  5. 5.

    L. Miao, R. Xu, Y. Ma, Z. Zhu, J. Wang, and R. Cai, Environ. Geol. 56, 225 (2008).

    Article  Google Scholar 

  6. 6.

    J. Han, Y.F. Wang, R.J. Liu, and F. Wan, SCI. REP-UK 10, 13681 (2020).

    Article  Google Scholar 

  7. 7.

    C.G. Parker and E.J. Opila, J. Am. Ceram. Soc. 103, 2715 (2019).

    Article  Google Scholar 

  8. 8.

    Z. Tian, L. Zheng, Z. Li, J. Li, and J. Wang, J. Eur. Ceram. Soc. 36, 2813 (2016).

    Article  Google Scholar 

  9. 9.

    Z.W. Luo, W.C. Lei, H.Z. Liang, W.J. Xu, X.Y. Liu, C.C. Qin, and A.X. Lu, Ceram. Int. 46, 17698 (2020).

    Article  Google Scholar 

  10. 10.

    J.J. Shea, IEEE Electr. Insul. M. 36, 73 (2020).

    Article  Google Scholar 

  11. 11.

    R.H. Shi, Thermochim. Acta (2020). https://doi.org/10.1016/j.tca.2019.178461.

    Article  Google Scholar 

  12. 12.

    N.A. Toropov and I.A. Bondar, Bull. Acad. Sci. USSR Div. Chem. Sci. 10, 682 (1961).

    Article  Google Scholar 

  13. 13.

    N.A. Toropov and I.A. Bondar, J. Am. Chem. Soc. 74, 2002 (1964).

    Google Scholar 

  14. 14.

    I.A. Bondar and N.A. Toropov, Mater. Res. Bull. 2, 479 (1967).

    Article  Google Scholar 

  15. 15.

    C.H. Drummond, W.E. Lee, W.A. Sanders, and J.D. Kiser, Crystallization and Characterization of Y2O3-SiO2 Glasses. Part 2: Ceramic Engineering and Science Proceedings (Hoboken: Wiley, 1988).

    Google Scholar 

  16. 16.

    V.B.M. Hageman and H.A.J. Oonk, Phys. Chem. Glasses 27, 194 (1986).

    Google Scholar 

  17. 17.

    I. Warsaw and R. Roy, Progress in the Science and Technology of the Rare Earth (New York: Pergamon, 1964).

    Google Scholar 

  18. 18.

    K. Liddel and D.P. Thompson, Br. Ceram. Trans. J. 85, 17 (1986).

    Google Scholar 

  19. 19.

    C.H. Drummond, W.E. Lee, W.A. Sanders, et al., Ceram. Eng. Sci. Proc. 9, 1343 (1988).

    Article  Google Scholar 

  20. 20.

    N.S. Jacobson, J. Am. Ceram. Soc. 97, 1959 (2014).

    Article  Google Scholar 

  21. 21.

    I.A. Bondar, Ceram. Int. 8, 83 (1982).

    Article  Google Scholar 

  22. 22.

    C.J. Liu and J.Y. Qiu, J. Eur. Ceram. Soc. 38, 2090 (2018).

    Article  Google Scholar 

  23. 23.

    P. Hudon, I. Jung, and D.R. Baker, J. Petrol. 46, 1859 (2005).

    Article  Google Scholar 

  24. 24.

    E. Jak and P.C. Hayes, Trans. Inst. Min. Metall. C 117, 1 (2008).

    Google Scholar 

  25. 25.

    L. Xia, Z. Liu, and P.A. Taskinen, J. Am. Ceram. Soc. 100, 981 (2016).

    Google Scholar 

  26. 26.

    L. Xia, Z. Liu, and P.A. Taskinen, J. Eur. Ceram. Soc. 35, 4005 (2015).

    Article  Google Scholar 

Download references

Acknowledgment

The research was financially supported by the National Solid Waste Project (No. 2018YFC1902503) and Major Projects in Jiangxi Province (No. S2016YFSFG0009). The authors acknowledges the Analytical Center in Australia National University for EPMA analysis of the specimens. Mr. Chen JianBo’s help with the experiments is also warmly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhihong Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Sukhomlinov, D., Ye, F. et al. Experimental Determination of Phase Equilibria in the REM2O3-SiO2 (REM = Y/Yb/La) Systems at Elevated Temperature. JOM (2020). https://doi.org/10.1007/s11837-020-04473-1

Download citation