Skip to main content
Log in

Uncertainty Quantification in Atomistic Modeling of Metals and Its Effect on Mesoscale and Continuum Modeling: A Review

  • Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The design of next-generation alloys through the integrated computational materials engineering (ICME) approach relies on multiscale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. Atomistic methods such as density functional theory (DFT) and molecular dynamics (MD) have been successful in predicting properties of never before studied compounds or phases. However, uncertainty quantification (UQ) of DFT and MD results is rarely reported due to computational and UQ methodology challenges. Over the past decade, studies that mitigate this gap have emerged. These advances are reviewed in the context of thermodynamic modeling and information exchange with mesoscale methods such as the phase-field method (PFM) and calculation of phase diagrams (CALPHAD). The importance of UQ is illustrated using properties of metals, with aluminum as an example, and highlighting deterministic, frequentist, and Bayesian methodologies. Challenges facing routine uncertainty quantification and an outlook on addressing them are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Darolia, JOM 43, 44 (1991).

    Google Scholar 

  2. G. Hanko, H. Antrekowitsch, and P. Ebner, JOM 54, 51 (2002).

    Google Scholar 

  3. B.O. Iddins, D.E. Graham, M.H. Waugh, T. Robbins, J. Cunningham III, and M.T. Finn, J. Occup. Environ. Med. 62, 287 (2020).

    Google Scholar 

  4. P. Honarmandi and R. Arróyave, Integr. Mater. Manuf. Innov. 9, 103 (2020).

    Google Scholar 

  5. A.V. Chernatynskiy, S.R. Phillpot, and R.A. LeSar, Annu. Rev. Mater. Res. 43, 157 (2013).

    Google Scholar 

  6. Y. Wang and D. McDowell, Uncertainty Quantification in Multiscale Materials Modeling (Elsevier Science and Technology: San Diego, 2020).

    Google Scholar 

  7. D.V. Malakhov, Calphad 21, 391 (1997).

    MathSciNet  Google Scholar 

  8. E. Königsberger and G. Eriksson, Calphad 19, 207 (1995).

    Google Scholar 

  9. T.C. Duong, A. Talapatra, W. Son, M. Radovic, and R. Arróyave, Sci. Rep. 7, 5138 (2017).

    Google Scholar 

  10. R.G. Hennig, A. Wadehra, K.P. Driver, W.D. Parker, C.J. Umrigar, and J.W. Wilkins, Phys. Rev. B. 82, 014101 (2010).

    Google Scholar 

  11. M. Stan, Mater. Today 12, 20 (2009).

    Google Scholar 

  12. W. Kohn, A.D. Becke, and R.G. Parr, J. Phys. Chem. 100, 12974 (1996).

    Google Scholar 

  13. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford: Clarendon, 1987).

    MATH  Google Scholar 

  14. B.S.D. Frenkel, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. (San Diego: Academic, 2002).

    MATH  Google Scholar 

  15. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd ed. (New York: Cambridge University Press, 2004).

    MATH  Google Scholar 

  16. J. Haile, Molecular Dynamics Simulation: Elementary Methods (New York: Wiley-Interscience, 1997).

    Google Scholar 

  17. J. Hoyt, M. Asta, and A. Karma, Mater. Sci. Eng. R 41, 121 (2003).

    Google Scholar 

  18. J. Sun, R. Haunschild, B. Xiao, I.W. Bulik, G.E. Scuseria, and J.P. Perdew, J. Chem. Phys. 138, 044113 (2013).

    Google Scholar 

  19. J. Sun, A. Ruzsinszky, and J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).

    Google Scholar 

  20. J. Wellendorff, K.T. Lundgaard, K.W. Jacobsen, and T. Bligaard, J. Chem. Phys. 140, 144107 (2014).

    Google Scholar 

  21. F. Tran, J. Stelzl, and P. Blaha, J. Chem. Phys. 144, 204120 (2016).

    Google Scholar 

  22. P. Janthon, S.A. Luo, S.M. Kozlov, F. Viñes, J. Limtrakul, D.G. Truhlar, and F. Illas, J. Chem. Theory Comput. 10, 3832 (2014).

    Google Scholar 

  23. K. Choudhary, G. Cheon, E. Reed, and F. Tavazza, Phys. Rev. B. 98, 014107 (2018).

    Google Scholar 

  24. P.E. Blöchl, Phys. Rev. B. 50, 17953 (1994).

    Google Scholar 

  25. J.J. Mortensen, L.B. Hansen, and K.W. Jacobsen, Phys. Rev. B. 71, 035109 (2005).

    Google Scholar 

  26. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  27. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S.D. Gironcoli, T. Deutsch, J.K. Dewhurst, I.D. Marco, C. Draxl, M. Dulak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V.V. Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang, and S. Cottenier, Science 351, 1415 (2016).

    Google Scholar 

  28. K. Choudhary and F. Tavazza, Comput. Mater. Sci. 161, 300 (2019).

    Google Scholar 

  29. J.J. Gabriel, F.Y.C. Congo, A. Sinnott, K. Mathew, T.C. Allison, F. Tavazza, and R.G. Hennig. arXiv preprint arXiv:2001.01851 (2020).

  30. N.L. Anderson, R.P. Vedula, and A. Strachan, Comput. Mater. Sci. 109, 124 (2015).

    Google Scholar 

  31. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  32. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).

    Google Scholar 

  33. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, G.L. Hart, S. Sanvito, M.B. Nardelli, N. Mingo, and O. Levy, Comput. Mater. Sci. 58, 227 (2012).

    Google Scholar 

  34. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, JOM 65, 1501 (2013).

    Google Scholar 

  35. K. Choudhary, I. Kalish, R. Beams, and F. Tavazza, Sci. Rep. 7, 5179 (2017).

    Google Scholar 

  36. K. Lejaeghere, V.V. Speybroeck, G.V. Oost, and S. Cottenier, Crit. Rev. Solid State Mater. Sci. 39, 1 (2014).

    Google Scholar 

  37. K. Lejaeghere, J. Jaeken, V.V. Speybroeck, and S. Cottenier, Phys. Rev. B. 89, 014304 (2014).

    Google Scholar 

  38. P.-W. Guan, G. Houchins, and V. Viswanathan, J. Chem. Phys. 151, 244702 (2019).

    Google Scholar 

  39. G.A.D. Wijs, G. Kresse, and M.J. Gillan, Phys. Rev. B 57, 8223 (1998).

    Google Scholar 

  40. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    MathSciNet  Google Scholar 

  41. G. Petretto, S. Dwaraknath, H.P.C. Miranda, D. Winston, M. Giantomassi, M.V. Setten, X. Gonze, K.A. Persson, G. Hautier, and G.-M. Rignanese, Sci. Data 5, 180065 (2018).

    Google Scholar 

  42. R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K.A. Persson, and S.P. Ong, Sci. Data 3, 160080 (2016).

    Google Scholar 

  43. M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008).

    Google Scholar 

  44. C.A. Becker and M.J. Kramer, Model. Simul. Mater. Sci. Eng. 18, 74001 (2010).

    Google Scholar 

  45. B. Grabowski, T. Hickel, and J. Neugebauer, Phys. Rev. B 76, 24309 (2007).

    Google Scholar 

  46. C.A. Becker, F.M. Tavazza, Z.T. Trautt, and R.A.B. de Macedo, Curr. Opin. Solid State Mater. Sci. 17, 277 (2013).

    Google Scholar 

  47. L. Alzate-Vargas, M.E. Fortunato, B. Haley, C. Li, C.M. Colina, and A. Strachan, Model. Simul. Mater. Sci. Eng. 26, 65007 (2018).

    Google Scholar 

  48. J. Mullins, Y. Ling, S. Mahadevan, L. Sun, and A. Strachan, Reliab. Eng. Syst. Saf. 147, 49 (2016).

    Google Scholar 

  49. Z.T. Trautt, F. Tavazza, and C.A. Becker, Model. Simul. Mater. Sci. Eng. 23, 74009 (2015).

    Google Scholar 

  50. A.P. Bartok, M.C. Payne, R. Kondor, and G. Csanyi, Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

  51. R. Jinnouchi, J. Lahnsteiner, F. Karsai, G. Kresse, and M. Bokdam, Phys. Rev. Lett. 122, 225701 (2019).

    Google Scholar 

  52. M. Vohra, A.Y. Nobakht, S. Shin, and S. Mahadevan, Int. J. Heat Mass Transf. 127, 297 (2018).

    Google Scholar 

  53. R.A. Messerly, M.R. Shirts, and A.F. Kazakov, J. Chem. Phys. 149, 114109 (2018).

    Google Scholar 

  54. S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, and J.P. Sethna, Phys. Rev. Lett. 93, 165501 (2004).

    Google Scholar 

  55. A. Mishra, S. Hong, P. Rajak, C. Sheng, K. Nomura, R.K. Kalia, A. Nakano, and P. Vashishta, NPJ Comput. Mater. 4, 42 (2018).

    Google Scholar 

  56. F. Rizzi, H.N. Najm, B.J. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson, and O.M. Knio, Multiscale Model. Simul. 10, 1428 (2012).

    MathSciNet  Google Scholar 

  57. P. Zhang and D.R. Trinkle, Model. Simul. Mater. Sci. Eng. 23, 65011 (2015).

    Google Scholar 

  58. P. Angelikopoulos, C. Papadimitriou, and P. Koumoutsakos, J. Chem. Phys. 137, 144103 (2012).

    Google Scholar 

  59. S. Longbottom and P. Brommer, Model. Simul. Mater. Sci. Eng. 27, 44001 (2019).

    Google Scholar 

  60. S.T. Reeve and A. Strachan, J. Comput. Phys. 334, 207 (2017).

    MathSciNet  Google Scholar 

  61. F. Rizzi, H.N. Najm, B.J. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson, and O.M. Knio, Multiscale Model. Simul. 10, 1460 (2012).

    MathSciNet  Google Scholar 

  62. J. Wang, S. Olsson, C. Wehmeyer, A. Pérez, N.E. Charron, G. de Fabritiis, F. Noé, and C. Clementi, ACS Cent. Sci. 5, 755 (2019).

    Google Scholar 

  63. F. Grogan, M. Holst, L. Lindblom, and R. Amaro, J. Chem. Phys. 147, 234106 (2017).

    Google Scholar 

  64. K.L. Joshi and S. Chaudhuri, Phys. Chem. Chem. Phys. 17, 18790 (2015).

    Google Scholar 

  65. K. Joshi and S. Chaudhuri, Combust. Flame 184, 20 (2017).

    Google Scholar 

  66. K. Joshi and S. Chaudhuri, J. Phys. Chem. C 122, 14434 (2018).

    Google Scholar 

  67. K. Lee, K. Joshi, S. Chaudhuri, and D. Stewart, Combust. Flame 215, 352 (2020).

    Google Scholar 

  68. K. Lee, K. Joshi, S. Chaudhuri, and D.S. Stewart, J. Chem. Phys. 144, 184111 (2016).

    Google Scholar 

  69. G. Dhaliwal, P.B. Nair, and C.V. Singh, Carbon 142, 300 (2019).

    Google Scholar 

  70. A.V. Tran and Y. Wang, Comput. Mater. Sci. 127, 141 (2017).

    Google Scholar 

  71. D. Zhang and S. Chaudhuri, Comput. Mater. Sci. 160, 222 (2019).

    Google Scholar 

  72. A. Tran, D. Liu, H. Tran, and Y. Wang, Model. Simul. Mater. Sci. Eng. 27, 64005 (2019).

    Google Scholar 

  73. H. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method (Oxford: Cambridge University Press, 2007).

    MATH  Google Scholar 

  74. M. Stan and B. Reardon, Calphad 27, 319 (2003).

    Google Scholar 

  75. Z.-K. Liu, J. Phase Equilib. Diffus. 30, 517 (2009).

    Google Scholar 

  76. S. Bigdeli, L.-F. Zhu, A. Glensk, B. Grabowski, B. Lindahl, T. Hickel, and M. Selleby, Calphad 65, 79 (2019).

    Google Scholar 

  77. J. Pavlů, P. Řehák, J. Vřešťál, and M. Šob, Calphad 51, 161 (2015).

    Google Scholar 

  78. B. Hu, S. Sridar, L. Hao, and W. Xiong, Intermetallics 122, 106791 (2020).

    Google Scholar 

  79. M. Hillert, J. Alloys Compd. 320, 161 (2001).

    Google Scholar 

  80. G. Cacciamani, A.T. Dinsdale, M. Palumbo, and A. Pasturel, Intermetallics 18, 1148 (2010).

    Google Scholar 

  81. T.C. Duong, R.E. Hackenberg, A. Landa, P. Honarmandi, A. Talapatra, H.M. Volz, A.M. Llobet, A.I. Smith, G.M. King, S. Bajaj, A. Ruban, L. Vitos, P.E.A. Turchi, and R. Arroyave, Calphad 55, 219 (2016).

    Google Scholar 

  82. R.A. Otis and Z.-K. Liu, JOM 69, 886 (2017).

    Google Scholar 

  83. N.H. Paulson, B.J. Bocklund, R.A. Otis, Z.-K. Liu, and M. Stan, Acta Mater. 174, 9 (2019).

    Google Scholar 

  84. N.H. Paulson, E. Jennings, and M. Stan, Int. J. Eng. Sci. 142, 74 (2019).

    Google Scholar 

  85. N.H. Paulson, S. Zomorodpoosh, I. Roslyakova, and M. Stan, Calphad 68, 101728 (2020).

    Google Scholar 

  86. D.M. Blei, A. Kucukelbir, and J.D. McAuliffe, J. Am. Stat. Assoc. 112, 859 (2017).

    Google Scholar 

  87. M. Hoffman and A. Gelman, J. Mach. Learn. Res 15, 1593 (2014).

    MathSciNet  Google Scholar 

  88. M. Girolami and B. Calderhead, J. R. Stat. Soc. B 73, 123 (2011).

    MathSciNet  Google Scholar 

  89. J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Google Scholar 

  90. V. Landau and L. Ginzburg, Zh. Eksp. Teor. Fiz. 20, 10641082 (1950).

    Google Scholar 

  91. J. Gunton, M. Miguel, and P. Sahni, The dynamics of first-order phase transitions.Phase Transitions and Critical Phenomena, Vol. 8, ed. C. Domb and J.L. Lebowitz (London: Academic, 1987), pp. 267–466.

    Google Scholar 

  92. P. Hohenberg and B. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Google Scholar 

  93. V. Attari, P. Honarmandi, T. Duong, D.J. Sauceda, D. Allaire, and R. Arroyave, Acta Mater. 183, 452 (2020).

    Google Scholar 

  94. N. Wang, S. Rokkam, T. Hochrainer, M. Pernice, and A. El-Azab, Comput. Mater. Sci. 89, 165 (2014).

    Google Scholar 

  95. P. Miles, L. Leon, R. Smith, and W. Oates, Proc. SPIE 10165, Behavior and Mechanics of Multifunctional Materials and Composites, 1016509 (2017).

  96. L.S. Leon, R.C. Smith, P. Miles, and W.S. Oates, Proc. SPIE 10596, Behavior and Mechanics of Multifunctional Materials and Composites XII, 105960T (2018).

  97. K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang, S. Ghosh, T. Duong, I. Karaman, A. Elwany, and R. Arróyave, Acta Mater. 185, 320 (2020).

    Google Scholar 

  98. E.A.B. de Moraes, M. Zayernouri, and M.M. Meerschaert, Int. J. Numer. Methods Eng. vol. submitted.

  99. R. Schmid-Fetzer, D. Andersson, P.-Y. Chevalier, L. Eleno, O. Fabrichnaya, U. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich, Calphad 31, 38 (2007).

    Google Scholar 

  100. M. Wood, M. Cusentino, B. Wirth, and A. Thompson, Phys. Rev. B 99, 184305 (2019).

    Google Scholar 

  101. I. Steinbach, L. Zhang, and M. Plapp, Acta Mater. 60, 2689 (2012).

    Google Scholar 

  102. S.G. Kim, W.T. Kim, and T. Suzuki, Phys. Rev. E 60, 7186 (1999).

    Google Scholar 

  103. P. Honarmandi, T. Duong, S.F. Ghoreishi, D. Allaire, and R. Arroyave, Acta Mater. 164, 636 (2019).

    Google Scholar 

  104. L. Chen and J. Shen, Comput. Phys. Commun. 108, 147 (1998).

    Google Scholar 

  105. D.E. Ricciardi, O.A. Chkrebtii, and S.R. Niezgoda, Integr. Mater. Manuf. Innov. 9, 181 (2020).

    Google Scholar 

Download references

Acknowledgements

J.J.G., N.H.P., and M.S. gratefully acknowledge financial support from awards 70NANB14H012 and 70NANB19H005 from US Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD) in the Northwestern-Argonne Institute of Science and Engineering, and the Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the US Department of Energy under Contract No. DE-AC02-06CH11357. T.C.D. and S.C. thank the ARPA-E for its support under Contract Number PRJ1007310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Gabriel.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests in the writing of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, J.J., Paulson, N.H., Duong, T.C. et al. Uncertainty Quantification in Atomistic Modeling of Metals and Its Effect on Mesoscale and Continuum Modeling: A Review. JOM 73, 149–163 (2021). https://doi.org/10.1007/s11837-020-04436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04436-6

Navigation