Skip to main content
Log in

Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning

  • Augmenting Physics-based Models in ICME with Machine Learning and Uncertainty Quantification
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Determining process–structure–property linkages is one of the key objectives in material science, and uncertainty quantification plays a critical role in understanding both process–structure and structure–property linkages. In this work, we seek to learn a distribution of microstructure parameters that are consistent in the sense that the forward propagation of this distribution through a crystal plasticity finite element model matches a target distribution on materials properties. This stochastic inversion formulation infers a distribution of acceptable/consistent microstructures, as opposed to a deterministic solution, which expands the range of feasible designs in a probabilistic manner. To solve this stochastic inverse problem, we employ a recently developed uncertainty quantification framework based on push-forward probability measures, which combines techniques from measure theory and Bayes’ rule to define a unique and numerically stable solution. This approach requires making an initial prediction using an initial guess for the distribution on model inputs and solving a stochastic forward problem. To reduce the computational burden in solving both stochastic forward and stochastic inverse problems, we combine this approach with a machine learning Bayesian regression model based on Gaussian processes and demonstrate the proposed methodology on two representative case studies in structure–property linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Science, T.C. (US), Materials Genome Initiative for Global Competitiveness. Executive Office of the President, National Science and Technology Council (2011).

  2. A. Agrawal and A. Choudhary, APL Mater. 4(5), 053208 (2016).

    Google Scholar 

  3. S.R. Kalidindi, A.J. Medford, and D.L. McDowell, JOM 68(8), 2126 (2016).

    Google Scholar 

  4. D.L. McDowell, JOM 59(9), 21 (2007).

    Google Scholar 

  5. J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45(1), 4 (2013).

    Google Scholar 

  6. P. Honarmandi and R. Arróyave, Integr. Mater. Manuf. Innov. 1–41 (2020).

  7. P. Fernandez-Zelaia, Y.C. Yabansu, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 8(2), 67 (2019).

    Google Scholar 

  8. A. Paul, P. Acar, Wk Liao, A. Choudhary, V. Sundararaghavan, and A. Agrawal, Comput. Mater. Sci. 160, 334 (2019).

    Google Scholar 

  9. L. Johnson and R. Arróyave, Mater. Des. 107, 7 (2016).

    Google Scholar 

  10. M. Yuan, S. Paradiso, B. Meredig, and S.R. Niezgoda, Integr. Mater. Manuf. Innov. 7(4), 214 (2018).

    Google Scholar 

  11. M. Diehl, M. Groeber, C. Haase, D.A. Molodov, F. Roters, and D. Raabe, JOM 69(5), 848 (2017).

    Google Scholar 

  12. W. Liu and J. Lian, Proc. Manuf. 47, 1552 (2020).

    Google Scholar 

  13. W. Liu, J. Lian, N. Aravas, and S. Münstermann, Int. J. Plast. 126, 102614 (2020).

    Google Scholar 

  14. M. Diehl, J. Niehuesbernd, and E. Bruder, Metals 9(12), 1252 (2019).

    Google Scholar 

  15. A.E. Tallman, K.S. Stopka, L.P. Swiler, Y. Wang, S.R. Kalidindi, and D.L. McDowell, JOM 71(8), 2646 (2019).

    Google Scholar 

  16. A.E. Tallman, L.P. Swiler, Y. Wang, and D.L. McDowell, Comput. Methods Appl. Mech. Eng. 365, 113009 (2020).

    Google Scholar 

  17. R. Liu, Y.C. Yabansu, A. Agrawal, S.R. Kalidindi, and A.N. Choudhary, Integr. Mater. Manuf. Innov. 4(1), 13 (2015).

    Google Scholar 

  18. R. Liu, Y.C. Yabansu, Z. Yang, A.N. Choudhary, S.R. Kalidindi, and A. Agrawal, Integr. Mater. Manuf. Innov. 6(2), 160 (2017).

    Google Scholar 

  19. A. Pandey and R. Pokharel, Machine learning enabled surrogate crystal plasticity model for spatially resolved 3D orientation evolution under uniaxial tension. arXiv:2005.00951 (2020).

  20. Z. Yang, Y.C. Yabansu, D. Jha, Wk Liao, A.N. Choudhary, S.R. Kalidindi, and A. Agrawal, Acta Mater. 166, 335 (2019).

    Google Scholar 

  21. Z. Yang, R. Al-Bahrani, A.C. Reid, S. Papanikolaou, S.R. Kalidindi, W.k. Liao, A. Choudhary, and A. Agrawal, Deep learning based domain knowledge integration for small datasets: illustrative applications in materials informatics. in 2019 International Joint Conference on Neural Networks (IJCNN). (IEEE, 2019), p. 1–8.

  22. Z. Yang, Y.C. Yabansu, R. Al-Bahrani, Wk Liao, A.N. Choudhary, S.R. Kalidindi, and A. Agrawal, Comput. Mater. Sci. 151, 278 (2018).

    Google Scholar 

  23. Z.L. Wang and Y. Adachi, Mater. Sci. Eng. A 744, 661 (2019).

    Google Scholar 

  24. P. Acar, S. Srivastava, and V. Sundararaghavan, AIAA J. 55(9), 3161 (2017).

    Google Scholar 

  25. H.J. Choi, D.L. Mcdowell, J.K. Allen, and F. Mistree, Eng. Optim. 40(4), 287 (2008).

    Google Scholar 

  26. B.D. Ellis and D.L. McDowell, Integr. Mater. Manuf. Innov. 6(1), 9 (2017).

    Google Scholar 

  27. D.L. McDowell, J. Panchal, H.J. Choi, C. Seepersad, J. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (Butterworth-Heinemann, Oxford, 2009).

    Google Scholar 

  28. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk, Acta Mater. 56(6), 1257 (2008).

  29. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk, Acta Mater. 56(6), 1274 (2008).

  30. R. Bostanabad, Y. Zhang, X. Li, T. Kearney, L.C. Brinson, D.W. Apley, W.K. Liu, and W. Chen, Prog. Mater. Sci. 95, 1 (2018).

    Google Scholar 

  31. S. Torquato, Annu. Rev. Mater. Res. 32(1), 77 (2002).

    Google Scholar 

  32. S. Bargmann, B. Klusemann, J. Markmann, J.E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers, Prog. Mater. Sci. 96, 322 (2018).

    Google Scholar 

  33. Y. Liu, M.S. Greene, W. Chen, D.A. Dikin, and W.K. Liu, Comput. Aided Des. 45(1), 65 (2013).

    Google Scholar 

  34. A. Tran and H. Tran, Acta Mater. 178, 207 (2019).

    Google Scholar 

  35. M.A. Groeber and M.A. Jackson, Integr. Mater. Manuf. Innov. 3(1), 5 (2014).

    Google Scholar 

  36. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius, et al. Comput. Mater. Sci. 158, 420 (2019).

    Google Scholar 

  37. F. Roters, P. Eisenlohr, C. Kords, D. Tjahjanto, M. Diehl, and D. Raabe, Procedia Iutam 3, 3 (2012).

    Google Scholar 

  38. F. Roters, Advanced material models for the crystal plasticity finite element method: development of a general CPFEM framework. Ph.D. thesis (RWTH Aachen University, 2011).

  39. F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods: In Materials Science and Engineering (Wiley, New York, 2011).

    Google Scholar 

  40. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58(4), 1152 (2010).

    Google Scholar 

  41. M. Diehl, A spectral method using fast Fourier transform to solve elastoviscoplastic mechanical boundary value problems.

  42. H.F. Alharbi and S.R. Kalidindi, Int. J. Plast. 66, 71 (2015).

    Google Scholar 

  43. P. Eisenlohr, M. Diehl, R.A. Lebensohn, and F. Roters, Int. J. Plast. 46, 37 (2013).

    Google Scholar 

  44. P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters, Int. J. Plast. 66, 31 (2015).

    Google Scholar 

  45. S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B.F. Smith, and H. Zhang, PETSc/TS: a modern scalable ODE/DAE solver library. arXiv:1806.01437 (2018).

  46. S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al. PETSc users manual (2019).

  47. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. de Freitas, Proc. IEEE 104(1), 148 (2016).

    Google Scholar 

  48. A. Tran, M. Eldred, Y. Wang, S. McCann, srMO-BO-3GP: a sequential regularized multi-objective constrained Bayesian optimization for design applications, in Proceedings of the ASME 2020 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 1: 40th Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2020).

  49. A. Tran, S. McCann, J.M. Furlan, K.V. Pagalthivarthi, R.J. Visintainer, T. Wildey, and M. Eldred, aphBO-2GP-3B: a budgeted asynchronous-parallel multi-acquisition for known/unknown constrained Bayesian optimization on high-performing computing architecture. arXiv:2003.09436 (2020).

  50. A. Tran, J. Sun, J.M. Furlan, K.V. Pagalthivarthi, R.J. Visintainer, and Y. Wang, Comput. Methods Appl. Mech. Eng. 347, 827 (2019).

    Google Scholar 

  51. C.E. Rasmussen, Gaussian Processes in Machine Learning (MIT Press, Cambridge, 2006).

    MATH  Google Scholar 

  52. T. Butler, J. Jakeman, and T. Wildey, SIAM J. Sci. Comput. 40(2), A984 (2018).

    Google Scholar 

  53. T. Butler, J. Jakeman, and T. Wildey, SIAM J. Sci. Comput. 40(5), A3523 (2018).

    Google Scholar 

  54. T. Butler, T. Wildey, and T.Y. Yen, Inverse Problems (2020).

  55. D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe, Acta Mater. 61(2), 494 (2013).

    Google Scholar 

  56. S.L. Wong, M. Madivala, U. Prahl, F. Roters, and D. Raabe, Acta Mater. 118, 140 (2016).

    Google Scholar 

  57. S.R. Kalidindi, J. Mech. Phys. Solids 46(2), 267 (1998).

    Google Scholar 

  58. W. Blum and P. Eisenlohr, Mater. Sci. Eng. A 510, 7 (2009).

    Google Scholar 

  59. J.W. Hutchinson, Proc. R. Soc Lond. A Math. Phys. Sci. 348(1652), 101 (1976).

    Google Scholar 

  60. F. Han, M. Diehl, F. Roters, and D. Raabe, J. Mater. Process. Technol. 277, 116449 (2020).

    Google Scholar 

  61. M. Wicke and A. Brueckner-Foit, Mixed-mode crack tip fields in a polycrystalline aluminum alloy, in MATEC Web of Conferences, vol. 300 (EDP Sciences, 2019), p. 11004.

  62. Z. Zhao, M. Ramesh, D. Raabe, A. Cuitino, and R. Radovitzky, Int. J. Plast. 24(12), 2278 (2008).

    Google Scholar 

  63. A.V. Tran, D. Liu, H.A. Tran, and Y. Wang, Modell. Simul. Mater. Sci. Eng. 27(6), 064005 (2019).

    Google Scholar 

  64. A. Tran, J. Tranchida, T. Wildey, and A.P. Thompson, J. Chem. Phys. 153, 074705 (2020).

    Google Scholar 

  65. A. Tran, T. Wildey, and S. McCann, sBF-BO-2CoGP: a sequential bi-fidelity constrained Bayesian optimization for design applications, in Proceedings of the ASME 2019 IDETC/CIE, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. Volume 1: 39th Computers and Information in Engineering Conference. (American Society of Mechanical Engineers, 2019). V001T02A073.

  66. A. Tran, T. Wildey, and S. McCann, J. Comput. Inform. Sci. Eng. 20(3), 1 (2020).

    Google Scholar 

  67. A. Tran, J.A. Mitchell, L.P. Swiler, and T. Wildey, Acta Mater. 194, 80 (2020).

    Google Scholar 

Download references

Acknowledgements

The views expressed in the article do not necessarily represent the views of the US Department of Energy or the US Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under Contract DE-NA-0003525. This research was supported by the US Department of Energy, Office of Science, Early Career Research Program.

Funding

This research was supported by the US Department of Energy, Office of Science, Early Career Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Tran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, A., Wildey, T. Solving Stochastic Inverse Problems for Property–Structure Linkages Using Data-Consistent Inversion and Machine Learning. JOM 73, 72–89 (2021). https://doi.org/10.1007/s11837-020-04432-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04432-w

Navigation