Skip to main content
Log in

Thermodynamics Models for V-pit Nucleation and Growth in III-Nitride on Silicon

  • Silicon Production, Refining, Properties, and Photovoltaics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Silicon and sapphire are common substrates for AlN, InGaN, and GaN thin films in several applications such as photovoltaic and light-embedded diodes. Threading dislocations are generated at interfaces between III-nitride (III-N) layers and these substrates because of large lattice and thermal expansion coefficient (TEC) mismatches. These dislocations penetrate the top surface of III-N layers to relax the system by forming V-pit defects. This work presents a thermodynamics-based model to study V-pit formation and growth in InGaN/GaN epilayers on either silicon or sapphire substrates. The model calculates the evolution of V-pit defects in thin films through the energy balance between the strain energy in the III-N layer, dislocation deterioration energy to form new V-pits, and V-pit facet energies that result because of facet formations. The impact of different lattice and TEC mismatches as well as a novel approach, the embedded void approach, on V-pit nucleation and growth is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Cheng, X. Yang, L. Sang, L. Guo, J. Zhang, J. Wang, C. He, L. Zhang, M. Wang, F. Xu, N. Tang, Z. Qin, X. Wang, and B. Shen, Sci. Rep. 6, 23020 (2016).

    Article  Google Scholar 

  2. S.A. Kukushkin, A.V. Osipov, V.N. Bessolov, B.K. Medvedev, V.K. Nevolin, and K.A. Tcarik, Rev. Adv. Mater. Sci. 17, 1 (2008).

    Google Scholar 

  3. K.H. Khafagy, T.M. Hatem, and S.M. Bedair, in TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings (Springer US, 2020), pp. 2057–2064.

  4. J.E. Northrup, L.T. Romano, and J. Neugebauer, Appl. Phys. Lett. 74, 2319 (1999).

    Article  Google Scholar 

  5. J.E. Northrup and J. Neugebauer, Phys. Rev. B Condens. Matter Mater. Phys. 60, 8473 (1999).

    Article  Google Scholar 

  6. A.V. Lobanova, A.L. Kolesnikova, A.E. Romanov, S.Y. Karpov, M.E. Rudinsky, and E.V. Yakovlev, Appl. Phys. Lett. 103, 152106 (2013).

    Article  Google Scholar 

  7. W. Qi, J. Zhang, C. Mo, X. Wang, X. Wu, Z. Quan, G. Wang, S. Pan, F. Fang, J. Liu, and F. Jiang, J. Appl. Phys. 122, 084504 (2017).

    Article  Google Scholar 

  8. X.H. Wu, C.R. Elsass, A. Abare, M. MacK, S. Keller, P.M. Petroff, S.P. Denbaars, J.S. Speck, and S.J. Rosner, Appl. Phys. Lett. 72, 692 (1998).

    Article  Google Scholar 

  9. J. Kim, Y.-H. Cho, D.-S. Ko, X.-S. Li, J.-Y. Won, E. Lee, S.-H. Park, J.-Y. Kim, and S. Kim, Opt. Express 22, A857 (2014).

    Article  Google Scholar 

  10. T.B. Eldred, M. Abdelhamid, J.G. Reynolds, N.A. El-Masry, J.M. Lebeau, and S.M. Bedair, Appl. Phys. Lett. 116, 102104 (2020).

    Article  Google Scholar 

  11. K.H. Khafagy, T.M. Hatem, and S.M. Bedair, Appl. Phys. Lett. 112, 042109 (2018).

    Article  Google Scholar 

  12. K.H. Khafagy, T.M. Hatem, and S.M. Bedair, MRS Adv. 4, 755 (2019).

    Article  Google Scholar 

  13. K.H. Khafagy, T.M. Hatem, and S.M. Bedair, in TMS 2020 147th Annual Meeting & Exhibition Supplemental Proceedings (Springer US, 2018), pp. 453–461.

  14. S.I. Salah, T.M. Hatem, E.E. Khalil, and S.M. Bedair, Mater. Sci. Eng., B 242, 104 (2019).

    Article  Google Scholar 

  15. Y.A. Bioud, A. Boucherif, M. Myronov, A. Soltani, G. Patriarche, N. Braidy, M. Jellite, D. Drouin, and R. Arès, Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  16. Y.A. Biouda, A. Boucherifa, M. Myronovb, G. Patriarchec, D. Drouina, and R. Arèsa, Trans. ECS 93, 81 (2019).

    Article  Google Scholar 

  17. F.C. Frank, Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 809 (1951).

    Article  Google Scholar 

  18. J. Matthews, Epitaxial Growth Part A (Amsterdam: Elsevier, 2012).

    Google Scholar 

  19. T.L. Song, J. Appl. Phys. 98, 084906 (2005).

    Article  Google Scholar 

  20. E. Suhir, J. Appl. Mech. 64, 15 (2017).

    Article  Google Scholar 

  21. H. Morkoç, Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth, 1st ed. (New York: Wiley, 2009).

    Google Scholar 

  22. M.K. Horton, S. Rhode, S.L. Sahonta, M.J. Kappers, S.J. Haigh, T.J. Pennycook, C.J. Humphreys, R.O. Dusane, and M.A. Moram, Nano Lett. 15, 923 (2015).

    Article  Google Scholar 

  23. P. Frajtag, N.A. El-Masry, N. Nepal, and S.M. Bedair, Appl. Phys. Lett. 98, 023115 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The support from the Young Investigators Research Grant (No. YIRG05) at the British University in Egypt and the Research Grant from the Academy of Scientific Research & Technology (ASRT) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Hatem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khafagy, K.H., Hatem, T.M. & Bedair, S.M. Thermodynamics Models for V-pit Nucleation and Growth in III-Nitride on Silicon. JOM 73, 293–298 (2021). https://doi.org/10.1007/s11837-020-04421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04421-z

Navigation