Skip to main content
Log in

Self-Bonding Effect Development for Plasma Spraying of Stainless Steel Coating Through Using Mo-Clad Stainless Steel Powders

  • Surface Engineering: Applications for Advanced Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The limited inter-lamellar bonding in the conventional thermal-sprayed 304SS coating usually leads to much lower corrosion and wear resistance than their bulk counterparts. In this study, Mo-clad stainless steel 304SS-17Mo powders prepared by mechanical alloying were used for plasma spraying to generate ultra-high-tempertature droplets to deposit the coatings with enhanced inter-lamellar bonding. The temperature at the interface between the molten splats and the stainless steel was calculated by numerical simulation, and the surface temperature of in-flight particles was measured by a commercial thermal spray particle diagnostic system. The microstructures of the coatings after etching were characterized to reveal inter-lamellar bonding. The adhesive and cohesive strengthes of the coatings were estimated by tensile and scratch tests. The measurement of the in-flight particle temperature reveals the possibility of creating a self-bonding effect, which is confirmed by microstructure examination, high adhesion over 66 MPa, and cohesion of 221 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Ohmori and C.J. Li, Thin Solid Films 201, 241 (1991).

    Google Scholar 

  2. C.J. Li and A. Ohmori, J. Therm. Spray Technol. 11, 365 (2002).

    Google Scholar 

  3. C.J. Li, G.J. Yang, and C.X. Li, J. Therm. Spray Technol. 22, 192 (2012).

    Google Scholar 

  4. A. Ohmori, C.J. Li, and Y. Arata, Trans. Join. Weld. Res. Inst. 19, 259 (1990).

    Google Scholar 

  5. Z.H. Chu, W.X. Deng, W. Zheng, Y.Y. Zhou, Y. Zhang, J.X. Xu, and L. Gao, J. Therm. Spray Technol. 29, 1111 (2020).

    Google Scholar 

  6. S.A. Galedari, A. Mahdavi, F. Azarmi, Y. Huang, and A. McDonald, J. Therm. Spray Technol. 28, 645 (2019).

    Google Scholar 

  7. K. Sridhar, M.B. Deshmukh, A.S. Khanna, and A. Gasser, J. Therm. Spray Technol. 9, 377 (2000).

    Google Scholar 

  8. R.T. Allsop, T.J. Pitt, and J.V. Hardy, Metallurgia 63, 125 (1961).

    Google Scholar 

  9. S. Kitahara and A. Hasui, J. Vac. Sci. Technol. 11, 747 (1974).

    Google Scholar 

  10. J.M. Houben, G.G. Liempd, 10th International Thermal Spray Conference (German Welding Society, 1983), pp. 66–71.

  11. L. Li, X.Y. Wang, G. Wei, A. Vaidya, H. Zhang, and S. Sampath, Thin Solid Films 468, 113 (2004).

    Google Scholar 

  12. H. Zhang, X.Y. Wang, and L.L. Zheng, Int. J. Heat Mass Transf. 44, 4579 (2001).

    Google Scholar 

  13. C.J. Li, C.X. Li, and G.J. Yang, J. Therm. Spray Technol. 15, 717 (2006).

    Google Scholar 

  14. S.P. Wang, G.X. Wang, and E.F. Matthys, Int. J. Heat Mass Transf. 41, 1177 (1998).

    Google Scholar 

  15. C.I. Helgesson, Nature 209, 706 (1966).

    Google Scholar 

  16. F.N. Longo, J. Vac. Sci. Technol. 12, 773 (1975).

    Google Scholar 

  17. S. Sampath, G.A. Bancke, and H. Herman, Surf. Eng. 5, 293 (1989).

    Google Scholar 

  18. S. Deshpande, S. Sampath, and H. Zhang, Surf. Coat. Technol. 200, 5395 (2006).

    Google Scholar 

  19. Y.Z. Xing, C.J. Li, Q. Zhang, C.X. Li, and G.J. Yang, J. Am. Ceram. Soc. 91, 3931 (2008).

    Google Scholar 

  20. S. Hao, C.J. Li, and G.J. Yang, J. Therm. Spray Technol. 20, 160 (2011).

    Google Scholar 

  21. G.J. Yang, C.X. Li, S. Hao, and C.J. Li, Surf. Coat. Technol. 235, 841 (2013).

    Google Scholar 

  22. S.W. Yao, C.J. Li, J.J. Tian, and G.J. Yang, Acta Mater. 119, 9 (2016).

    Google Scholar 

  23. V. Pershin, M. Lufifitha, S. Chandra, and J. Mostaghimi, J. Therm. Spray Technol. 12, 370 (2003).

    Google Scholar 

  24. J. Wang, X.T. Luo, C.J. Li, N. Ma, and M. Takahashi, Surf. Coat. Technol. 371, 36 (2019).

    Google Scholar 

  25. J. Wang, C.J. Li, G.J. Yang, and C.X. Li, J. Therm. Spray Technol. 26, 1 (2016).

    Google Scholar 

  26. K.V. Niessen and M. Gindrat, J. Eng. Gas Turb. Power. 133, 445 (2010).

    Google Scholar 

  27. G. Mauer, A. Hospach, and R. Vasen, Surf. Coat. Technol. 220, 219 (2013).

    Google Scholar 

  28. C.B. Huang, L.Z. Du, and W.G. Zhang, J. Alloys Compd. 479, 777 (2009).

    Google Scholar 

  29. J.J. Tian, S.W. Yao, X.T. Luo, C.X. Li, and C.J. Li, Acta Mater. 110, 19 (2016).

    Google Scholar 

  30. C.B. Huang, L.Z. Du, and W.G. Zhang, J. Therm. Spray Technol. 23, 463 (2014).

    Google Scholar 

  31. J.J. Tian, S.W. Yao, S.L. Zhang, and C.J. Li, Surf. Coat. Tech. 335, 52 (2018).

    Google Scholar 

  32. J.J. Tian, Y.K. Wei, C.X. Li, G.J. Yang, and C.J. Li, J. Therm. Spray Technol. 27, 232 (2018).

    Google Scholar 

  33. W.J. Tobler and S. Virtanen, Corros. Sci. 48, 1585 (2006).

    Google Scholar 

  34. G. Zheng and S. Kumar, JOM 70, 1535 (2018).

    Google Scholar 

  35. J.H. Perepezko and R. Sakidja, JOM 65, 307 (2013).

    Google Scholar 

  36. B. Yilbas, A. Kumar, and B. Bhushan, JOM 66, 37 (2014).

    Google Scholar 

  37. ASTM Designation C633-01, Am. Soc. Test. Mater. 3, 1 (2001).

  38. Y. Lahmar-Mebdoua, A. Vardelle, P. Fauchais, and D. Gobin, Int. J. Therm. Sci. 49, 522 (2010).

    Google Scholar 

  39. Y. Lahmar-Mebdoua, A. Vardelle, P. Fauchais, and D. Gobin, High Temp. Mater. Proc. 11, 191 (2007).

    Google Scholar 

  40. Z. Bergant and J. Grum, J. Therm. Spray Technol. 18, 380 (2009).

    Google Scholar 

  41. X.Y. Dong, X.T. Luo, S.L. Zhang, and C.J. Li, J. Therm. Spray Technol. 29, 173 (2020).

    Google Scholar 

  42. Y. Arata, A. Ohmori, and C.J. Li, Trans. Join. Weld. Res. Inst. 17, 311 (1988).

    Google Scholar 

  43. G.M. Hamilton and L.E. Goodman, J. Appl. Mech. 33, 371 (1966).

    Google Scholar 

  44. X.C. Wang, S.L. Chen, and B. Shen, Adv. Mater. Res. 797, 719 (2013).

    Google Scholar 

  45. P.O. Aiyedun, F.N. Nwaneto, and A.E. Adeleke, Aust. J. Basic Appl. Sci. 6, 6312 (2010).

    Google Scholar 

Download references

Acknowledgements

The present project is financially supported by National Natural Science Foundation of China (Grant Nos. U1837201; 52031010) and Jiangxi Key R&D Program of General Project (Grant No. 20202BBE53010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XJ., Zhang, L., Dong, XY. et al. Self-Bonding Effect Development for Plasma Spraying of Stainless Steel Coating Through Using Mo-Clad Stainless Steel Powders. JOM 72, 4613–4623 (2020). https://doi.org/10.1007/s11837-020-04395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04395-y

Navigation