Skip to main content
Log in

Numerical Modeling of the Macrosegregation Improvement in Continuous Casting Blooms by Using F-EMS

  • Solidification Behavior in the Presence of External Fields
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A three-dimensional mathematic model based on segmentation that joins the electromagnetic field, melt flow, heat transfer, solidification and solute transport in the whole casting domain has been established to study the solute transport at the final stage of solidification in a bloom continuous casting process. The effects of the final electromagnetic stirring (F-EMS) positions on the macrosegregation degree of the as-cast bloom are compared and analyzed. The results show that the maximum carbon segregation degree, the ratio of the local carbon concentration to the initial carbon concentration, is reduced from 1.292 to 1.254 with the application of F-EMS. In addition, the position of F-EMS is also an important factor. The maximum carbon segregation degrees are 1.254, 1.237 and 1.269 when the installation location of F-EMS is 14 m, 16 m and 18 m away from the meniscus, respectively. The optimal center solid fraction is about 0.1 at the F-EMS center for this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Ghosh, Sadhana 26, 5 (2001).

    Article  Google Scholar 

  2. G. Lesoult, Mater. Sci. Eng., A 413, 19 (2005).

    Article  Google Scholar 

  3. J. Verhoeven, Metall. Trans. 2, 2673 (1971).

    Article  Google Scholar 

  4. M.C. Schneider and C. Beckermann, Int. J. Heat Mass Transf. 38, 3455 (1995).

    Article  Google Scholar 

  5. A. Scholes, Ironmak. Steelmak. 32, 10 (2005).

    Article  Google Scholar 

  6. S.K. Choudhary and S. Ganguly, ISIJ Int. 47, 1759 (2007).

    Article  Google Scholar 

  7. K. Ayata, T. Mori, T. Fujimot, T. Ohnishi, and I. Wakasugi, Trans. Iron Steel Inst. Jpn. 24, 931 (1984).

    Article  Google Scholar 

  8. T. Ohnishi, K. Shiwaku, S. Kawaski, S. Okushima, Y. Suzuki, and K. Doi, Trans. Iron Steel Inst. Jpn. 73, 513 (1987).

    Article  Google Scholar 

  9. J. Li, B. Wang, Y. Ma, and J. Cui, Mater. Sci. Eng., A 425, 201 (2006).

    Article  Google Scholar 

  10. H. Sun, L. Li, X. Cheng, W. Qiu, Z. Liu, and L. Zeng, Ironmak. Steelmak. 42, 439 (2015).

    Article  Google Scholar 

  11. M. Long and D. Chen, Steel Res. Int. 82, 847 (2011).

    Article  Google Scholar 

  12. H. Mizukami, M. Komatsu, T. Kitagawa, and K. Kawakami, Trans. Iron Steel Inst. Jpn. 70, 194 (1984).

    Article  Google Scholar 

  13. K.S. Oh and Y.W. Chang, ISIJ Int. 35, 866 (1995).

    Article  Google Scholar 

  14. W. Jiang, M. Long, T. Liu, D. Chen, H. Chen, J. Cao, H. Fan, S. Yu, and H. Duan, JOM 70, 2059 (2018).

    Article  Google Scholar 

  15. H. Sun and J. Zhang, Metall. Mater. Trans. B 45, 1133 (2014).

    Article  Google Scholar 

  16. H. Sun, L. Li, D. Ye, and X. Wu, Metall. Mater. Trans. B 49, 1909 (2018).

    Article  Google Scholar 

  17. D. Jiang and M. Zhu, Metall. Mater. Trans. B 47, 3446 (2016).

    Article  Google Scholar 

  18. P.A. Davidson, Annu. Rev. Fluid Mech. 31, 273 (1999).

    Article  Google Scholar 

  19. S. Li, H. Xiao, P. Wang, H. Liu, and J. Zhang, Metals 9, 946 (2019).

    Article  Google Scholar 

  20. W.P. Jones and B.E. Launder, Int. J. Heat Mass Transf. 16, 1119 (1973).

    Article  Google Scholar 

  21. S. Li, P. Lan, H. Tang, Z. Tie, and J. Zhang, Steel Res. Int. 89, 1800071 (2018).

    Article  Google Scholar 

  22. H. Sun and J. Zhang, Metall. Mater. Trans. B 45, 936 (2014).

    Article  Google Scholar 

  23. Q. Dong, J. Zhang, L. Qian, and Y. Yin, ISIJ Int. 57, 814 (2017).

    Article  Google Scholar 

  24. M.C. Schneider and C. Beckermann, ISIJ Int. 33, 665 (1995).

    Article  Google Scholar 

  25. Y.M. Won and B.G. Thomas, Metall. Mater. Trans. A 32, 1755 (2001).

    Article  Google Scholar 

  26. H. Yang, X. Zhang, K. Deng, W. Li, Y. Gan, and L. Zhao, Metall. Mater. Trans. B 29, 1345 (1998).

    Article  Google Scholar 

  27. M.R. Aboutalebi, M. Hasan, and R.I.L. Guthrie, Metall. Mater. Trans. B 26, 731 (1995).

    Article  Google Scholar 

  28. M. Long, D. Chen, Q. Wang, D. Luo, Z. Han, Q. Liu, and W. Gao, Ironmak. Steelmak. 39, 370 (2012).

    Article  Google Scholar 

  29. T. Takahashi, K. Ichikawa, M. Kudou, and K. Shimahara, Trans. Iron Steel Inst. Jpn. 16, 283 (1976).

    Article  Google Scholar 

  30. M.R. Bridge and G.D. Rogers, Metall. Mater. Trans. B 15, 581 (1984).

    Article  Google Scholar 

Download references

Acknowledgement

The first author Shaoxiang Li thanks the National Science and Technology Major Project of China under Grant Number 2019ZX04029001 as his further study after receiving the PhD is partially financed by this Project. The authors are also grateful to Yuqi Zhang from Beijing Forestry University for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Han, Z. & Zhang, J. Numerical Modeling of the Macrosegregation Improvement in Continuous Casting Blooms by Using F-EMS. JOM 72, 4117–4126 (2020). https://doi.org/10.1007/s11837-020-04363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04363-6

Navigation