Skip to main content

Recent Studies on Void Shrinkage in Metallic Materials Subjected to In Situ Heavy Ion Irradiations

Abstract

The continuous formation and growth of voids induced by radiations in metallic materials may lead to significant microstructure damage and degradation of mechanical properties. In sharp contrast to the void swelling commonly observed in irradiated metallic materials, nanovoids in nanoporous metallic materials are found to shrink during radiation and thus nanovoids enhance the radiation tolerance of metallic materials. This article reviews recent studies on size-dependent void shrinkage in metallic materials subject to in situ heavy ion irradiation. Furthermore, we demonstrate the capability of machine learning in identifying and tracking the evolution of nanovoids. The physical mechanisms of radiation induced void shrinkage revealed by simulation studies are briefly summarized.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B.N. Singh, A. Horsewell, D.S. Gelles, and F.A. Garner, J. Nucl. Mater. 191–194, 1172 (1992).

    Google Scholar 

  2. 2.

    X. Zhang, K. Hattar, Y. Chen, L. Shao, J. Li, C. Sun, K. Yu, N. Li, M.L. Taheri, H. Wang, J. Wang, and M. Nastasi, Prog. Mater Sci. 96, 217 (2018).

    Google Scholar 

  3. 3.

    S.J. Zinkle and G.S. Was, Acta Mater. 61, 735 (2013).

    Google Scholar 

  4. 4.

    S. Ishino, J. Nucl. Mater. 251, 225 (1997).

    Google Scholar 

  5. 5.

    L.K. Mansur, A.F. Rowcliffe, R.K. Nanstad, S.J. Zinkle, W.R. Corwin, and R.E. Stoller, J. Nucl. Mater. 329–333, 166 (2004).

    Google Scholar 

  6. 6.

    S.J. Zinkle, Compr. Nucl. Mater. 1, 65 (2012).

    Google Scholar 

  7. 7.

    G.R. Odette, M.J. Alinger, and B.D. Wirth, Annu. Rev. Mater. Res. 38, 471 (2008).

    Google Scholar 

  8. 8.

    R.E. Stoller, G.R. Odette, and B.D. Wirth, J. Nucl. Mater. 251, 49 (1997).

    Google Scholar 

  9. 9.

    F.A. Garner, Understanding and Mitigating Ageing in Nuclear Power Plants (Woodhouse Publishing, 2010), p. 308.

  10. 10.

    M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schäublin, and B.N. Singh, J. Nucl. Mater. 276, 114 (2000).

    Google Scholar 

  11. 11.

    L.K. Mansur, Nucl. Technol. 40, 5 (1978).

    Google Scholar 

  12. 12.

    A.D. Brailsford and R. Bullough, J. Nucl. Mater. 44, 121 (1972).

    Google Scholar 

  13. 13.

    B.N. Singh and A.J.E. Foreman, Philos. Mag. 29, 847 (1974).

    Google Scholar 

  14. 14.

    J.L. Katz and H. Wiedersich, J. Chem. Phys. 55, 1414 (1971).

    Google Scholar 

  15. 15.

    S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262 (1989).

    Google Scholar 

  16. 16.

    L.K. Mansur, J. Nucl. Mater. 78, 156 (1978).

    Google Scholar 

  17. 17.

    E.A. Little and D.A. Stow, J. Nucl. Mater. 87, 25 (1979).

    Google Scholar 

  18. 18.

    S.J. Zinkle, Comprehensive Nuclear Materials, vol. 1 (Elsevier, 2012), p. 65.

  19. 19.

    W.Z. Han, M.J. Demkowicz, E.G. Fu, Y.Q. Wang, and A. Misra, Acta Mater. 60, 6341 (2012).

    Google Scholar 

  20. 20.

    K.Y. Yu, Y. Liu, C. Sun, H. Wang, L. Shao, E.G. Fu, and X. Zhang, J. Nucl. Mater. 425, 140 (2012).

    Google Scholar 

  21. 21.

    K.Y. Yu, D. Bufford, C. Sun, Y. Liu, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Nat. Commun. 4, 1377 (2013).

    Google Scholar 

  22. 22.

    Y. Chen, J. Li, K.Y. Yu, H. Wang, M.A. Kirk, M. Li, and X. Zhang, Acta Mater. 111, 148 (2016).

    Google Scholar 

  23. 23.

    C. Fan, J. Li, Z. Fan, H. Wang, and X. Zhang, Metall. Mater. Trans. A 48, 5172 (2017).

    Google Scholar 

  24. 24.

    Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M.A. Kirk, J. Wang, and X. Zhang, Nat. Commun. 6, 7036 (2015).

    Google Scholar 

  25. 25.

    I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).

    Google Scholar 

  26. 26.

    M.J. Demkowicz, A. Misra, and A. Caro, Curr. Opin. Solid State Mater. Sci. 16, 101 (2012).

    Google Scholar 

  27. 27.

    G.M. Cheng, W.Z. Xu, Y.Q. Wang, A. Misra, and Y.T. Zhu, Scr. Mater. 123, 90 (2016).

    Google Scholar 

  28. 28.

    E.G. Fu, A. Misra, H. Wang, L. Shao, and X. Zhang, J. Nucl. Mater. 407, 178 (2010).

    Google Scholar 

  29. 29.

    M.L. Jenkins, J. Nucl. Mater. 216, 124 (1994).

    Google Scholar 

  30. 30.

    J.A. Hinks, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 3652 (2009).

    Google Scholar 

  31. 31.

    J. Li, K.Y. Yu, Y. Chen, M. Song, H. Wang, M. Kirk, M. Li, and X. Zhang, Nano Lett. 15, 2922 (2015).

    Google Scholar 

  32. 32.

    J. Li, C. Fan, Q. Li, H. Wang, and X. Zhang, Acta Mater. 143, 30 (2018).

    Google Scholar 

  33. 33.

    C. Fan, A.R.G. Sreekar, Z. Shang, J. Li, M. Li, H. Wang, A. El-Azab, and X. Zhang, Scr. Mater. 166, 112 (2019).

    Google Scholar 

  34. 34.

    J. Li, Y. Chen, H. Wang, and X. Zhang, Scr. Mater. 144, 13 (2018).

    Google Scholar 

  35. 35.

    C. Sun, D. Bufford, Y. Chen, M.A. Kirk, Y.Q. Wang, M. Li, H. Wang, S.A. Maloy, and X. Zhang, Sci. Rep. 4, 3737 (2014).

    Google Scholar 

  36. 36.

    J. Li, C. Fan, J. Ding, S. Xue, Y. Chen, Q. Li, H. Wang, and X. Zhang, Sci. Rep. 7, 39484 (2017).

    Google Scholar 

  37. 37.

    F.A. Garner and M.B. Toloczko, J. Nucl. Mater. 206, 230 (1993).

    Google Scholar 

  38. 38.

    B.N. Singh and J.H. Evans, J. Nucl. Mater. 226, 277 (1995).

    Google Scholar 

  39. 39.

    C.H. Woo, J. Nucl. Mater. 276, 90 (2000).

    Google Scholar 

  40. 40.

    S.I. Golubov, B.N. Singh, and H. Trinkaus, J. Nucl. Mater. 276, 78 (2000).

    Google Scholar 

  41. 41.

    F.A. Garner, M.B. Toloczko, and B.H. Sencer, J. Nucl. Mater. 276, 123 (2000).

    Google Scholar 

  42. 42.

    B.L. Eyre, J. Phys. F Met. Phys. 3, 422 (1973).

    Google Scholar 

  43. 43.

    S.J. Zinkle, L.E. Seitzman, and W.G. Wolfer, Philos. Mag. A 55, 111 (1987).

    Google Scholar 

  44. 44.

    G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Berlin: Springer, 2016).

    Google Scholar 

  45. 45.

    T. Hochrainer and A. El-Azab, Philos. Mag. 95, 948 (2015).

    Google Scholar 

  46. 46.

    P.C. Millett, S. Rokkam, A. El-Azab, M. Tonks, and D. Wolf, Modell. Simul. Mater. Sci. Eng. 17, 64003 (2009).

    Google Scholar 

  47. 47.

    S. Rokkam, A. El-Azab, P. Millett, and D. Wolf, Modell. Simul. Mater. Sci. Eng. 17, 64002 (2009).

    Google Scholar 

  48. 48.

    P.C. Millett, A. El-Azab, S. Rokkam, M. Tonks, and D. Wolf, Comput. Mater. Sci. 50, 949 (2011).

    Google Scholar 

  49. 49.

    A. El-Azab, K. Ahmed, S. Rokkam, and T. Hochrainer, Curr. Opin. Solid State Mater. Sci. 18, 90 (2014).

    Google Scholar 

  50. 50.

    P.C. Millett, A. El-Azab, and D. Wolf, Comput. Mater. Sci. 50, 960 (2011).

    Google Scholar 

  51. 51.

    W.B. Liu, N. Wang, Y.Z. Ji, P.C. Song, C. Zhang, Z.G. Yang, and L.Q. Chen, J. Nucl. Mater. 479, 316 (2016).

    Google Scholar 

  52. 52.

    O. Ronneberger, P. Fischer, and T. Brox, International Conference on Medical Image Computing and Computer-Assisted Intervention (Cham: Springer, 2015), p. 234.

  53. 53.

    G. Roberts, S.Y. Haile, R. Sainju, D.J. Edwards, B. Hutchinson, and Y. Zhu, Sci. Rep. 9, 12744 (2019).

    Google Scholar 

  54. 54.

    W. Yao, Z. Zeng, C. Lian, and H. Tang, Neurocomputing 312, 364 (2018).

    Google Scholar 

  55. 55.

    Ö. Çiçek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger, International Conference on Medical Image Computing and Computer-Assisted Intervention (Cham: Springer, 2016), p. 424.

  56. 56.

    Z. Zhang, Q. Liu, and Y. Wang, IEEE Geosci. Remote Sens. Lett. 15, 749 (2018).

    Google Scholar 

  57. 57.

    A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde, Proceedings of the International Society for Music Information Retrieval Conference (ISMIR) (2017), p. 323.

  58. 58.

    D. P. Kingma and J. Ba, ArXiv Preprint arXiv:1412.6980 (2014).

  59. 59.

    D.S. Gelles, J. Nucl. Mater. 233–237, 293 (1996).

    Google Scholar 

  60. 60.

    E.H. Lee and L.K. Mansur, Metall. Trans. A 21, 1021 (1990).

    Google Scholar 

  61. 61.

    A.G. Mikhin, Y.N. Osetsky, and V.G. Kapinos, Philos. Mag. A 70, 25 (1994).

    Google Scholar 

  62. 62.

    J. Combronde and G. Brebec, Acta Metall. 19, 1393 (1971).

    Google Scholar 

  63. 63.

    Y.N. Osetsky, D.J. Bacon, and N. de Diego, Metall. Mater. Trans. A 33, 777 (2002).

    Google Scholar 

  64. 64.

    M.I. Baskes, MRS Bull. 11, 14 (1986).

    Google Scholar 

  65. 65.

    H. Ullmaier, J. Nucl. Mater. 133–134, 100 (1985).

    Google Scholar 

  66. 66.

    L.K. Mansur and W.A. Coghlan, J. Nucl. Mater. 119, 1 (1983).

    Google Scholar 

  67. 67.

    H. Trinkaus and B.N. Singh, J. Nucl. Mater. 323, 229 (2003).

    Google Scholar 

  68. 68.

    H. Trinkaus, J. Nucl. Mater. 318, 234 (2003).

    Google Scholar 

  69. 69.

    H. Trinkaus, Radiat. Effects 78, 189 (1983).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from NSF-CMMI-MOM 1728419. Y. Xue acknowledges support from NSF IIS-1850243, CCF-1918327. The computation was partially supported by Microsoft AI for Earth computing credits. H. Wang acknowledges financial support from the U.S. Office of Naval Research (N00014-16-1-2778). We also thank Dr. Meimei Li and Pete Baldo from Argonne National Laboratory for their help during in situ radiation experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary video 1. In situ video captured during Kr radiation of (110) Cu (left side) and the concurrent automatic tracking of void size evolution via machine learning (right side) (MP4 36762 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, T., Nasim, M., Annadanam, R.G.S. et al. Recent Studies on Void Shrinkage in Metallic Materials Subjected to In Situ Heavy Ion Irradiations. JOM 72, 4008–4016 (2020). https://doi.org/10.1007/s11837-020-04358-3

Download citation