Skip to main content
Log in

Liquid-State Interfacial Reactions of Sn and Sn-Ag-Cu Solders with p-Type (Bi,Sb)2Te3 Thermoelectric Material

  • Interfacial Stability in Multi-component Systems
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Liquid-state interfacial reactions of p-type (Bi,Sb)2Te3 thermoelectric (TE) material with Sn and Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC305) solders, respectively, were examined at 250°C on a commercial highly orientated (Bi,Sb)2Te3 substrate with a (110) soldering plane. For the reactions with Sn, the initial reaction phase was the porous SnTe intermetallic compound (IMC). Then, a dense SnTe layer with many tiny cracks formed between the porous phase and TE substrate. With longer aging time, the dense SnTe gradually changed to the porous phase due to Sb dissolution. In the subsequent stage, the reaction phase zone included porous SnTe, an alternating layer microstructure of SnTe and liquid solder, and SnTe/Sn3Sb2 alternating layers from the solder to TE. The IMC growth was extremely fast, being approximately 15 μm/min, and nearly linear with aging time, suggesting reaction control. For the reactions with SAC305, a similar microstructure of porous SnTe and the dense layer was observed. Compared with the reactions with Sn, however, the IMC growth rate was greatly suppressed by ~ 80%. This can be attributed to the Ag-rich phase layer between the dense SnTe and (Bi,Sb)2Te3. Ag was verified to be the key element for dramatically changing the interfacial reaction behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  2. H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  Google Scholar 

  3. H.J. Goldsmid, Materials 7, 2577 (2014).

    Article  Google Scholar 

  4. W. He, G. Zhang, X. Zhang, J. Ji, G. Li, and X. Zhao, Appl. Energy 143, 1 (2015).

    Article  Google Scholar 

  5. S. Fan, J. Zhao, J. Guo, Q. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).

    Article  Google Scholar 

  6. Y. Hosokawa, K. Tomita, and M. Takashiri, Sci. Rep. 9, 10790 (2019).

    Article  Google Scholar 

  7. C.V. Manzano, B. Abad, M. Munoz Rojo, Y.R. Koh, S.L. Hodson, A.M. Lopez Martinez, X. Xu, A. Shakouri, T.D. Sands, T. Borca-Tasciuc, and M. Martin-Gonzalez, Sci. Rep. 6, 19129 (2016).

    Article  Google Scholar 

  8. M. Wang, Z. Tang, T. Zhu, and X. Zhao, RSC Adv. 6, 98646 (2016).

    Article  Google Scholar 

  9. A. Krishna, N. Vijayan, B. Singh, K. Thukral, and K.K. Maurya, Mater. Sci. Eng. A 657, 33 (2016).

    Article  Google Scholar 

  10. I.T. Witting, T.C. Chasapis, F. Ricci, M. Peters, N.A. Heinz, G. Hautier, and G.J. Snyder, Adv. Electron. Mater. 5, 1800904 (2019).

    Article  Google Scholar 

  11. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren, Nano Lett. 10, 3373 (2010).

    Article  Google Scholar 

  12. T.Y. Lin, C.N. Liao, and A.T. Wu, J. Electron. Mater. 41, 153 (2012).

    Article  Google Scholar 

  13. C.-F. Lin, N.Y. Hau, Y.-T. Huang, Y.H. Chang, S.-P. Feng, and C.-M. Chen, J. Alloys Compd. 708, 220–230 (2017).

    Article  Google Scholar 

  14. W.-C. Lin, Y.-S. Li, and A.T. Wu, J. Electron. Mater. 47, 148 (2018).

    Article  Google Scholar 

  15. S.-W. Chen, Z.-W. Liu, H.-S. Chu, and Z.-Y. Huang, J. Alloys Compd. 7031, 111 (2018).

    Article  Google Scholar 

  16. S.-W. Chen, H.-J. Wu, C.-Y. Wu, C.-F. Chang, and C.-Y. Chen, J. Alloys Compd. 553, 106 (2013).

    Article  Google Scholar 

  17. S.-W. Chen, C.-Y. Wu, H.-J. Wu, and W.-T. Chiu, J. Alloys Compd. 611, 313 (2014).

    Article  Google Scholar 

  18. S. Ye, J.-D. Hwang, and C.-M. Chen, Metall. Mater. Trans. A 46, 2372 (2015).

    Article  Google Scholar 

  19. C.-H. Wang, M.-H. Li, C.-W. Chiu, and T.-Y. Chang, J. Alloys Compd. 767, 1133 (2018).

    Article  Google Scholar 

  20. H. Zhang, H.Y. Jing, Y.D. Han, L.Y. Xu, and G.-Q. Li, J. Alloys Compd. 576, 424 (2013).

    Article  Google Scholar 

  21. H.-J. Wu, A.T. Wu, P.-C. Wei, and S.-W. Chen, Mater. Res. Lett. 6, 244 (2018).

    Article  Google Scholar 

  22. F. Xu, F. Zhang, C. Yuan, R. Wang, H. Chen, Y. Ouyang, and X. Tao, Guangxi Sci. 24, 361 (2017).

    Google Scholar 

  23. S.-K. Lin, M.-Y. Tsai, P.-C. Tsai, and B.-H. Hsu, Sci. Rep. 4, 4557 (2015).

    Article  Google Scholar 

  24. M. He, X. Su, F. Yin, J. Wang, and Z. Li, Scripta Mater. 59, 411 (2008).

    Article  Google Scholar 

  25. S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen, and H.-J. Wu, J. Electron. Mater. 37, 992 (2008).

    Article  Google Scholar 

  26. J. Yang, Q. Zhang, J.Y. Lee, and H.P. Too, J. Colloid Interface Sci. 308, 157 (2007).

    Article  Google Scholar 

  27. G. Xi, K. Xiong, Q. Zhao, R. Zhang, H. Zhang, and Y. Qian, Cryst. Growth Des. 6, 577 (2006).

    Article  Google Scholar 

  28. C.-H. Wang and S.-W. Chen, Acta Mater. 54, 247 (2006).

    Article  Google Scholar 

  29. H.-J. Wu and S.-W. Chen, Acta Mater. 59, 6463 (2011).

    Article  Google Scholar 

  30. C.-H. Wang, S.-E. Huang, and C.-W. Chiu, J. Alloys Compd. 619, 474 (2015).

    Article  Google Scholar 

  31. C.-H. Wang and K.-T. Li, J. Mater. Sci. 51, 7309 (2016).

    Article  Google Scholar 

  32. C.-H. Wang, H.-H. Chen, and P.-Y. Li, Mater. Chem. Phys. 136, 325 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Funding support of this research by the Ministry of Science and Technology of Taiwan under Project No. MOST 108-2221-E-194-036 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-hong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Ch., Li, Mh., Chiu, Cw. et al. Liquid-State Interfacial Reactions of Sn and Sn-Ag-Cu Solders with p-Type (Bi,Sb)2Te3 Thermoelectric Material. JOM 72, 3558–3566 (2020). https://doi.org/10.1007/s11837-020-04288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04288-0

Navigation