Skip to main content

Surface Silanization of Polyimide for Autocatalytic Metallization

Abstract

Due to its superior chemical stability, mechanical strength, light weight, and flexibility, polyimide (PI) has been widely used as a polymeric substrate of flexible printed circuit boards such as flexible copper clad laminates (FCCLs). The development of an adhesiveless dual-layer structure is imperative for the application of FCCLs in globalized 5G consumer electronics. In this work, autocatalytic metallization on a silane-grafted PI film was developed to fabricate a high-quality Cu/PI substrate. PI was functionalized by amine-terminated organosilanes to load polyvinylpyrrolidone-capped Pd nanoclusters (PVP-nPd) as a catalyst. The effects of organosilanes with different numbers of amine functional groups on the adsorption of the PVP-nPd catalyst and the subsequent metallization of Cu were systematically investigated. Comprehensive surface characterizations were carried out on the PI films before and after silanization. The organosilane bearing three amine groups was found to outperform its counterpart with one amine group, exhibiting a fourfold increase in catalyst adsorption, which also improved the metallization efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    P.A. Macleod, A Review of Flexible Circuit Technology and Its Applications, PRIME Faraday Partnership: Leics (Loughborough University/UK, 2002).

  2. 2.

    M. Stoppa and A. Chiolerio, Sensors 14, 11957 (2014).

    Article  Google Scholar 

  3. 3.

    R.P. Gandhiraman, N.C.H. Le, C.K. Dixit, C. Volcke, C. Doyle, V. Gubala, S. Uppal, R. Monaghan, B. James, R. O’Kennedy, S. Daniels, and D.E. Williams, ACS Appl. Mater. Interfaces 3, 4640 (2011).

    Article  Google Scholar 

  4. 4.

    C.-W. Wu, C.-Y. Chiang, C.-H. Chen, C.-S. Chiang, C.-T. Wang, and L.-K. Chau, Talanta 146, 291 (2016).

    Article  Google Scholar 

  5. 5.

    P.-Y. Wu, C.-H. Lin, and C.-M. Chen, Metals 7, 189 (2017).

    Article  Google Scholar 

  6. 6.

    D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Prog. Polym. Sci. 37, 907 (2012).

    Article  Google Scholar 

  7. 7.

    M. Hasegawa and R. Nomura, React. Funct. Polym. 71, 109 (2011).

    Article  Google Scholar 

  8. 8.

    C.-C. Lai, C.-T. Yu, M.-H. Chen, H.-L. Chen, F.-M. Wang, C.-H. Lin, L.-C. Liu, and C.-M. Chen, React. Funct. Polym. 122, 98 (2018).

    Article  Google Scholar 

  9. 9.

    T. Aizawa, K. Okagawa, and M. Kashani, J. Mater. Process. Technol. 213, 1095 (2013).

    Article  Google Scholar 

  10. 10.

    H.-J. Kim, Y.-J. Park, J.-H. Choi, H.-S. Han, and Y.-T. Hong, J. Ind. Eng. Chem. 15, 23 (2009).

    Article  Google Scholar 

  11. 11.

    Y.-S. Hsiao, W.-T. Whang, S.C. Wu, and K.-R. Chuang, Thin Solid Films 516, 4258 (2008).

    Article  Google Scholar 

  12. 12.

    W.-P. Dow, G.-L. Liao, S.-E. Huang, and S.-W. Chen, J. Mater. Chem. 20, 3600 (2010).

    Article  Google Scholar 

  13. 13.

    T.-G. Woo, I.-S. Park, K.-H. Jung, W.-Y. Jeon, and K.-W. Seol, Met. Mater. Int. 17, 789 (2011).

    Article  Google Scholar 

  14. 14.

    K. Miyauchi and M. Yuasa, Prog. Org. Coat. 76, 1536 (2013).

    Article  Google Scholar 

  15. 15.

    T.-J. Liu, C.-H. Chen, P.-Y. Wu, C.-H. Lin, and C.-M. Chen, Langmuir 35, 7212 (2019).

    Article  Google Scholar 

  16. 16.

    Y.-H. Chen, Y.-H. Lai, P.-H. Wu, L.-S. Chen, Y.-S. Lin, and C.-M. Chen, J. Ind. Eng. Chem. 83, 90 (2020).

    Article  Google Scholar 

  17. 17.

    T.-J. Liu, M.C. Sil, and C.-M. Chen, Compos. Sci. Technol. 193, 108135 (2020).

    Article  Google Scholar 

  18. 18.

    C. Peng, S.H.Y. Lo, C.-C. Wan, and Y.-Y. Wang, Colloids Surf. A 308, 93 (2007).

    Article  Google Scholar 

  19. 19.

    T.-C. Wei, T.-C. Pan, C.-M. Chen, K.-C. Lai, and C.-H. Wu, Electrochem. Commun. 54, 6 (2015).

    Article  Google Scholar 

  20. 20.

    K.-C. Lai, P.-Y. Wu, C.-M. Chen, T.-C. Wei, C.-H. Wu, and S.-P. Feng, J. Electron. Mater. 45, 4813 (2016).

    Article  Google Scholar 

  21. 21.

    K. Fatyeyeva, A. Dahi, C. Chappey, D. Langevin, J.-M. Valleton, P.-E. Fabienne, and S. Marais, RSC Adv. 59, 31036 (2014).

    Article  Google Scholar 

  22. 22.

    M. Kaba, N. Raklaoui, M.-F. Guimon, and A. Mas, J. Appl. Polym. Sci. 97, 2088 (2005).

    Article  Google Scholar 

  23. 23.

    A. Watanabe, M. Fujitsuka, and O. Ito, Thin Solid Films, 354, 13–18 (1999).

    Article  Google Scholar 

  24. 24.

    M. Abdelmouleh, S. Boufi, A.B. Salah, M.N. Belgacem, and A. Gandini, Langmuir 18, 3203 (2002).

    Article  Google Scholar 

  25. 25.

    L. Zhao and H. Mitomo, J. Appl. Polym. Sci. 110, 1388 (2008).

    Article  Google Scholar 

  26. 26.

    T. Borkowski, A.M. Trzeciak, W. Bukowski, A. Bukowska, W. Tylus, and L. Kȩpiński, Appl. Catal. A 378, 83 (2010).

    Article  Google Scholar 

  27. 27.

    P.G. Tsyrul’nikov, T.N. Afonasenko, S.V. Koshcheev, and A.I. Boronin, Kinet. Catal. 48, 728 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “Innovation and Development Center of Sustainable Agriculture” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work was also financially supported by the Ministry of Science and Technology (MOST 107-2218-E-005-001) in Taiwan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 940 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, JN., Sil, M.C., Cheng, R. et al. Surface Silanization of Polyimide for Autocatalytic Metallization. JOM 72, 3529–3537 (2020). https://doi.org/10.1007/s11837-020-04286-2

Download citation