Skip to main content

Confirmation of Anomalous Nucleation in Zirconium


Pure, low-oxygen zirconium samples have been observed to nucleate a solid phase under conditions during which the sample was expected to remain liquid. This phenomenon was first seen during Spacelab Mission MSL-1R (materials science laboratory) experiments and has since also been observed in the International Space Station (ISS) electromagnetic levitation (EML) facility on a different sample. Current work has been able to replicate these anomalous solidification events under a range of conditions in the ISS MSL-EML facility. The solidification events are not well explained by classical homogeneous or heterogeneous nucleation. The current theory is that collapsing voids in the melt create a local region of high pressure that results in local material being deeply undercooled and a strong driving force for solidification.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. D.A. Porter, K.E. Kasterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. (Boca Raton: CRC Press, 2009), p. 7–9, 181–246.

    Google Scholar 

  2. W.H. Hofmeister, R.J. Bayuzick, R. Hyers, and G. Trapaga, Appl. Phys. Lett. (1999).

    Article  Google Scholar 

  3. D. Holland-Moritz, T. Schenk, P. Convert, T. Hansen, and D.M. Herlach, Meas. Sci. Technol. (2005).

    Article  Google Scholar 

  4. D.M. Herlach, D. Holland-Moritz, R. Willnecker, D. Herlach, and K. Maier, Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. (2003).

    Article  Google Scholar 

  5. C. Bührer, U. Holzwarth, K.G. Maier, D. Plazek, and J. Reske, Appl. Phys. A (1996).

    Article  Google Scholar 

  6. J.D. Hunt and K.A. Jackson, J. Appl. Phys. (1966).

    Article  Google Scholar 

  7. J.J. Frawley and W.J. Childs, Trans. Metall. Soc. AIME. 242, 256–263 (1968).

    Google Scholar 

  8. J.D. Hunt and K.A. Jackson, Nature (1966).

    Article  Google Scholar 

  9. R. Wunderlich, Presented at IWG 14, DLR, Colonge, 2016

  10. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals (New York: Oxford University Press, 1988), p. 72.

    Google Scholar 

  11. T. Ishikawa, P.-F. Paradis, T. Itami, and S. Yoda, Meas. Sci. Technol. (2005).

    Article  Google Scholar 

  12. J. Lee, D.M. Matson, S. Binder, M. Kolbe, D. Herlach, and R.W. Hyers, Metall. Mater. Trans. B (2014).

    Article  Google Scholar 

  13. R.W. Hyers, G. Trapaga, and B. Abedian, Metall. Mater. Trans. B (2003).

    Article  Google Scholar 

  14. S. Klein, D. Holland-Moritz, and D.M. Herlach, Phys. Rev. B (2009).

    Article  Google Scholar 

  15. P.-F. Paradis, W.-K. Rhim, in Proc. SPIE 3792, Materials Research in Low Gravity II, 1999.

  16. J. Zhao, The Effect of Oxygen on Properties of Zirconium Metal, Scholarworks @UmassAmherst, 2020. Accessed 9 April 2020

  17. R.W. Hyers, J. Zhao, G.P. Bracker, R. Wunderlich, and H. Fecht, Light Metals 100, 1 (2019).

    Article  Google Scholar 

Download references


The authors thank Jürgen Brillo, Douglas Matson, Dieter Herlach, Ken Kelton, Dirk Holland-Moritz, and Thomas Volkmann for fruitful discussions. The experiment was run in the ISS-EML facility, formerly MSL-EML. Support for this project was provide through NASA Grant NNX16AB40G.

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. P. Bracker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bracker, G.P., Schneider, S., Wunderlich, R. et al. Confirmation of Anomalous Nucleation in Zirconium. JOM 72, 3140–3146 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: