Abstract
One of the technical challenges with the recovery of valuable materials from end-of-life (EOL) photovoltaic (PV) modules for recycling is the liberation and separation of the materials. We present a potential method to liberate and separate shredded EOL PV panels for the recovery of Si wafer particles. The backing material is removed by submersion in liquid nitrogen, while the encapsulant is removed by pyrolysis. After pyrolysis, separation of the liberated particles (i.e., Si wafer and glass) is carried out by using particle size and shape with mechanical screening. Using this robust approach, a Si wafer grade of 86% and a recovery of 88% were achieved.
Similar content being viewed by others
References
B.P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovolt. Res. Appl. 15, 659 (2007).
K. Ardani and R. Margolis, U.S. Dep. Energy 1 (2011).
S. Weckend, A. Wade, and G. Heath, End of Life Management: Solar Photovoltaic Panels (U.S. Department of Energy, 2016).
V.M. Fthenakis, Energy Policy 28, 1051 (2000).
M. Goe and G. Gaustad, Conf. Rec. IEEE Photovolt. Spec. Conf. 2016-Nov, 3606 (2016).
S. Kang, S. Yoo, J. Lee, B. Boo, and H. Ryu, Renew. Energy 47, 152 (2012).
Y.R. Smith and P. Bogust, Review of solar silicon recycling. in: Energy Technol. 20 (Springer, 2018), pp. 463–470.
F. Corcelli, M. Ripa, E. Leccisi, V. Cigolotti, V. Fiandra, G. Graditi, L. Sannino, M. Tammaro, and S. Ulgiati, Ecol. Indic. (2016).
M. Goe and G. Gaustad, Appl. Energy 120, 41 (2014).
P. Ericksen, SB 5939-2017-18, Washington State Legislature (n.d.).
T. O’Mara, NY State Senate Bill S2837B (n.d.).
SB-489 Hazardous Waste: Photovoltaic Modules, California Legislature (n.d.).
N.C. McDonald and J.M. Pearce, Energy Policy 38, 7041 (2010).
W.H. Huang, W.J. Shin, L. Wang, W.C. Sun, and M. Tao, Sol. Energy 144, 22 (2017).
E. Klugmann-Radziemska, P. Ostrowski, K. Drabczyk, P. Panek, and M. Szkodo, Sol. Energy Mater. Sol. Cells 94, 2275 (2010).
P.R. Dias, M.G. Benevit, and H.M. Veit, Waste Manag. Res. 34, 235 (2016).
G. Moon and K. Yoo, Hydrometallurgy 171, 123 (2017).
A. Kuczynska-Lazewska, E. Klugmann-Radziemska, Z. Sobczak, and T. Klimczuk, Sol. Energy Mater. Sol. Cells 176, 190 (2018).
M.L. Bustamante and G. Gaustad, Appl. Energy 123, 397 (2014).
R.U. Ayres, Resour. Conserv. Recycl. 21, 145 (1997).
J. Cui and E. Forssberg, J. Hazard. Mater. 99, 243 (2003).
B.K. Reck and T.E. Graedel, Science. 337, 690 (2012).
Z. Wang, N.J. Miles, T. Wu, F. Gu, and P. Hall, Powder Technol. 301, 694 (2016).
M. Lunardi, J. Alvarez-Gaitan, J. Bilbao, and R. Corkish, Appl. Sci. 8, 1396 (2018).
A. Müller, K. Wambach, and E. Alsema, in Mater. Res. Soc. Symp. Proc. (2006), pp. 89–94.
Y. Xu, J. Li, Q. Tan, A.L. Peters, and C. Yang, Waste Manag. 75, 450 (2018).
J. Tao and S. Yu, Sol. Energy Mater. Sol. Cells 141, 108 (2015).
M. Tammaro, J. Rimauro, V. Fiandra, and A. Salluzzo, Renew. Energy 81, 103 (2015).
T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, and C.W. Lan, J. Cryst. Growth 310, 3403 (2008).
V. Aryan, M. Font-Brucart, and D. Maga, Prog. Photovolt. Res. Appl. 26, 443 (2018).
M.D. Kempe, G.J. Jorgensen, K.M. Terwilliger, T.J. McMahon, C.E. Kennedy, and T.T. Borek, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2 (IEEE, 2006), pp. 2160–2163.
C.E.L. Latunussa, F. Ardente, G.A. Blengini, and L. Mancini, Sol. Energy Mater. Sol. Cells 156, 101 (2016).
Y.R. Smith, J.R. Nagel, and R.K. Rajamani, in Energy Technol. 2017 (2017), pp. 379–386.
Y.R. Smith, J.R. Nagel, and R.K. Rajamani, Miner. Eng. 133, 149 (2019).
J.R. Nagel, D. Cohrs, J. Salgado, and R.K. Rajamani, KONA Powder Part. J. (2020).
L. Long, S. Sun, S. Zhong, W. Dai, J. Liu, and W. Song, J. Hazard. Mater. 177, 626 (2010).
D.R. Chong, W.E. Lee, B.K. Lim, J.H.L. Pang, and T.H. Low, Ninth Intersoc. Conf. Therm. Therm Phenom. Electron. Syst. 203 (2004).
P. Rupnowski and B. Sopori, Int. J. Fract. 155, 67 (2009).
Acknowledgments
YRS and PB would like to acknowledge support provided by the U.S. Department of Energy, Office of Science, Energy Efficiency Renewable Energy, Sunshot Initiative. This publication was developed under an appointment to the Energy Efficiency and Renewable Energy (EERE) Research Participation Program, administered for the U.S. Department of Energy (DOE) by the Oak Ridge Institute for Science and Education (ORISE). ORISE is managed by ORAU under DOE contract number DESC0014664. This document has not been formally reviewed by DOE. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DOE, or ORAU/ORISE. DOE and ORAU/ORISE do not endorse any products or commercial services mentioned in this publication.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bogust, P., Smith, Y.R. Physical Separation and Beneficiation of End-of-Life Photovoltaic Panel Materials: Utilizing Temperature Swings and Particle Shape. JOM 72, 2615–2623 (2020). https://doi.org/10.1007/s11837-020-04197-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-020-04197-2