Skip to main content
Log in

Physical Separation and Beneficiation of End-of-Life Photovoltaic Panel Materials: Utilizing Temperature Swings and Particle Shape

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

One of the technical challenges with the recovery of valuable materials from end-of-life (EOL) photovoltaic (PV) modules for recycling is the liberation and separation of the materials. We present a potential method to liberate and separate shredded EOL PV panels for the recovery of Si wafer particles. The backing material is removed by submersion in liquid nitrogen, while the encapsulant is removed by pyrolysis. After pyrolysis, separation of the liberated particles (i.e., Si wafer and glass) is carried out by using particle size and shape with mechanical screening. Using this robust approach, a Si wafer grade of 86% and a recovery of 88% were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovolt. Res. Appl. 15, 659 (2007).

    Article  Google Scholar 

  2. K. Ardani and R. Margolis, U.S. Dep. Energy 1 (2011).

  3. S. Weckend, A. Wade, and G. Heath, End of Life Management: Solar Photovoltaic Panels (U.S. Department of Energy, 2016).

  4. V.M. Fthenakis, Energy Policy 28, 1051 (2000).

    Article  Google Scholar 

  5. M. Goe and G. Gaustad, Conf. Rec. IEEE Photovolt. Spec. Conf. 2016-Nov, 3606 (2016).

  6. S. Kang, S. Yoo, J. Lee, B. Boo, and H. Ryu, Renew. Energy 47, 152 (2012).

    Article  Google Scholar 

  7. Y.R. Smith and P. Bogust, Review of solar silicon recycling. in: Energy Technol. 20 (Springer, 2018), pp. 463–470.

  8. F. Corcelli, M. Ripa, E. Leccisi, V. Cigolotti, V. Fiandra, G. Graditi, L. Sannino, M. Tammaro, and S. Ulgiati, Ecol. Indic. (2016).

  9. M. Goe and G. Gaustad, Appl. Energy 120, 41 (2014).

    Article  Google Scholar 

  10. P. Ericksen, SB 5939-2017-18, Washington State Legislature (n.d.).

  11. T. O’Mara, NY State Senate Bill S2837B (n.d.).

  12. SB-489 Hazardous Waste: Photovoltaic Modules, California Legislature (n.d.).

  13. N.C. McDonald and J.M. Pearce, Energy Policy 38, 7041 (2010).

    Article  Google Scholar 

  14. W.H. Huang, W.J. Shin, L. Wang, W.C. Sun, and M. Tao, Sol. Energy 144, 22 (2017).

    Article  Google Scholar 

  15. E. Klugmann-Radziemska, P. Ostrowski, K. Drabczyk, P. Panek, and M. Szkodo, Sol. Energy Mater. Sol. Cells 94, 2275 (2010).

    Article  Google Scholar 

  16. P.R. Dias, M.G. Benevit, and H.M. Veit, Waste Manag. Res. 34, 235 (2016).

    Article  Google Scholar 

  17. G. Moon and K. Yoo, Hydrometallurgy 171, 123 (2017).

    Article  Google Scholar 

  18. A. Kuczynska-Lazewska, E. Klugmann-Radziemska, Z. Sobczak, and T. Klimczuk, Sol. Energy Mater. Sol. Cells 176, 190 (2018).

    Article  Google Scholar 

  19. M.L. Bustamante and G. Gaustad, Appl. Energy 123, 397 (2014).

    Article  Google Scholar 

  20. R.U. Ayres, Resour. Conserv. Recycl. 21, 145 (1997).

    Article  Google Scholar 

  21. J. Cui and E. Forssberg, J. Hazard. Mater. 99, 243 (2003).

    Article  Google Scholar 

  22. B.K. Reck and T.E. Graedel, Science. 337, 690 (2012).

    Article  Google Scholar 

  23. Z. Wang, N.J. Miles, T. Wu, F. Gu, and P. Hall, Powder Technol. 301, 694 (2016).

    Article  Google Scholar 

  24. M. Lunardi, J. Alvarez-Gaitan, J. Bilbao, and R. Corkish, Appl. Sci. 8, 1396 (2018).

    Article  Google Scholar 

  25. A. Müller, K. Wambach, and E. Alsema, in Mater. Res. Soc. Symp. Proc. (2006), pp. 89–94.

  26. Y. Xu, J. Li, Q. Tan, A.L. Peters, and C. Yang, Waste Manag. 75, 450 (2018).

    Article  Google Scholar 

  27. J. Tao and S. Yu, Sol. Energy Mater. Sol. Cells 141, 108 (2015).

    Article  Google Scholar 

  28. M. Tammaro, J. Rimauro, V. Fiandra, and A. Salluzzo, Renew. Energy 81, 103 (2015).

    Article  Google Scholar 

  29. T.Y. Wang, Y.C. Lin, C.Y. Tai, R. Sivakumar, D.K. Rai, and C.W. Lan, J. Cryst. Growth 310, 3403 (2008).

    Article  Google Scholar 

  30. V. Aryan, M. Font-Brucart, and D. Maga, Prog. Photovolt. Res. Appl. 26, 443 (2018).

    Article  Google Scholar 

  31. M.D. Kempe, G.J. Jorgensen, K.M. Terwilliger, T.J. McMahon, C.E. Kennedy, and T.T. Borek, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, vol. 2 (IEEE, 2006), pp. 2160–2163.

  32. C.E.L. Latunussa, F. Ardente, G.A. Blengini, and L. Mancini, Sol. Energy Mater. Sol. Cells 156, 101 (2016).

    Article  Google Scholar 

  33. Y.R. Smith, J.R. Nagel, and R.K. Rajamani, in Energy Technol. 2017 (2017), pp. 379–386.

  34. Y.R. Smith, J.R. Nagel, and R.K. Rajamani, Miner. Eng. 133, 149 (2019).

    Article  Google Scholar 

  35. J.R. Nagel, D. Cohrs, J. Salgado, and R.K. Rajamani, KONA Powder Part. J. (2020).

  36. L. Long, S. Sun, S. Zhong, W. Dai, J. Liu, and W. Song, J. Hazard. Mater. 177, 626 (2010).

    Article  Google Scholar 

  37. D.R. Chong, W.E. Lee, B.K. Lim, J.H.L. Pang, and T.H. Low, Ninth Intersoc. Conf. Therm. Therm Phenom. Electron. Syst. 203 (2004).

  38. P. Rupnowski and B. Sopori, Int. J. Fract. 155, 67 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

YRS and PB would like to acknowledge support provided by the U.S. Department of Energy, Office of Science, Energy Efficiency Renewable Energy, Sunshot Initiative. This publication was developed under an appointment to the Energy Efficiency and Renewable Energy (EERE) Research Participation Program, administered for the U.S. Department of Energy (DOE) by the Oak Ridge Institute for Science and Education (ORISE). ORISE is managed by ORAU under DOE contract number DESC0014664. This document has not been formally reviewed by DOE. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of DOE, or ORAU/ORISE. DOE and ORAU/ORISE do not endorse any products or commercial services mentioned in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to York R. Smith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogust, P., Smith, Y.R. Physical Separation and Beneficiation of End-of-Life Photovoltaic Panel Materials: Utilizing Temperature Swings and Particle Shape. JOM 72, 2615–2623 (2020). https://doi.org/10.1007/s11837-020-04197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04197-2

Navigation