Skip to main content
Log in

A Method of High-quality Silica Preparation from Copper Smelting Slag

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-quality silica was prepared from copper smelting slag through a method of in situ modification. The effects of the addition of an amount of polyethylene glycol-6000 as a modifier, the modification temperature and the modified endpoint pH on the particle size and specific surface area of the silica were systematically studied. It has been shown that the particle size, specific surface area, and the interstices between the particles were greatly affected by the modification temperature and the pH of the modification endpoint. Optimal conditions are: modifier 10% as solute mass, modification temperature 40°C, and pH of modification endpoint 8.5. Under these conditions, the silicon sinking rate was as high as 97.82%, the prepared silica particles had good dispersibility, the average particle size was 20 nm, the particle morphology was spherical, and the specific surface area was as high as 244.67 m2/g, which was superior to A-grade standard of HG/T3061-1999 and ISO 5794-1:2005(E), and could be directly used in the rubber industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Du, H. Li, and M. Zhang, JOM-US 69, 2379 (2017).

    Article  Google Scholar 

  2. Y. Li, Y. Chen, C. Tang, S. Yang, J. He, and M. Tang, J. Hazard. Mater. 322, 402 (2017).

    Article  Google Scholar 

  3. Z. Guo, D. Zhu, J. Pan, and F. Zhang, JOM-US 68, 2341 (2016).

    Article  Google Scholar 

  4. P. Coursol, N. Cardona Valencia, P. Mackey, S. Bell, and B. Davis, JOM-US 64, 1305 (2012).

    Article  Google Scholar 

  5. R.E. Mast and G.H. Kent, JOM-US 7, 877 (1955).

    Article  Google Scholar 

  6. Z. Guo, J. Pan, D. Zhu, and F. Zhang, J. Clean. Prod. 199, 891 (2018).

    Article  Google Scholar 

  7. B. Gorai and R.K. Jana, Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  8. Q. Wang, S. Wang, M. Tian, D.X. Tang, Q. Tian, and X. Guo, Int. J. Min. Met. Mater. 26, 301 (2019).

    Article  Google Scholar 

  9. Q. Wang, X. Guo, Q. Tian, T. Jiang, M. Chen, and B. Zhao, Metals 7, 502 (2017).

    Article  Google Scholar 

  10. Q. Wang, X. Guo, Q. Tian, M. Chen, and B. Zhao, Metals 7, 302 (2017).

    Article  Google Scholar 

  11. J. Cao and B. Wang, China Min. Mag. 3, 17 (1994).

    Google Scholar 

  12. T. Zhou, C. Zhang, N. Wei, J. Yang, Y. Wu, and B. Chin, Ceram. Soc. 33, 691 (2014).

    Google Scholar 

  13. R. Bian and W. Du, China Nonferr. Metall. 2, 8 (2012).

    Google Scholar 

  14. V.V. Turov, V.M. Gun’Ko, M.D. Tsapko, V.M. Bogatyrev, J. Skubiszewska-Zieba, and R. Leboda, Appl. Surf. Sci. 229, 197 (2004).

    Article  Google Scholar 

  15. L. Zhou, L. Yin, K. Zhou, Z. Wen, D. Kong, and X. Zhao, Mater. Rev. 11, 56 (2003).

    Google Scholar 

  16. Y. Chen, S. Zhao, and S. Wang, Inorg. Chem. Ind. 45, 41 (2013).

    Google Scholar 

  17. J.F. Lopez, L.D. Perez, and B.L. Lopez, J. Appl. Polym. Sci. 122, 2130 (2011).

    Article  Google Scholar 

  18. D. An, Z. Wang, X. Zhao, Y. Liu, and Y. Guo, Colloids Surf. A 369, 218 (2010).

    Article  Google Scholar 

  19. Y. Song, L. Song, A. Lu, Z. Lu, T. Ding, and J. Chin, Ceram. Soc. 5, 674 (2013).

    Google Scholar 

  20. T. Wang, Q. Chen, P. Zhou, and Y. Liu, Fine Chem. 17, 438 (2000).

    Google Scholar 

  21. Q. Kong, H. Qian, and S. Li, Inorg. Chem. Ind. 41, 33 (2009).

    Google Scholar 

  22. K. He and H. Chen, Chem. React. Eng. Technol. 22, 181 (2006).

    Google Scholar 

  23. P. Quan and Q. Fang, Contemp. Chem. Ind. 7, 1168 (2014).

    Google Scholar 

  24. H. Gao and Y. Yang, Chem. Ind. Times 24, 16 (2010).

    Google Scholar 

  25. S. Prasertsri and N. Rattanasom, Polym. Test. 31, 593 (2012).

    Article  Google Scholar 

  26. X.K. Ma, N. Lee, H. Oh, J. Kim, C. Rhee, K. Park, and S. Kim, Colloids Surf. A 358, 172 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51620105013 and No. 51904351), Innovation-Driven Project of Central South University Hunan (No. 2020CX028) and Natural Science Fund for Distinguished Young Scholar of Hunan Province, China (No. 2019JJ20031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Li, Z., Li, D. et al. A Method of High-quality Silica Preparation from Copper Smelting Slag. JOM 72, 2676–2685 (2020). https://doi.org/10.1007/s11837-020-04196-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04196-3

Navigation