Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of Mg-1.5Zn-0.2Ca-0.2Ce Alloy Processed by Accumulated Extrusion Bonding

  • Emerging Mechanisms for Enhanced Plasticity in Magnesium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of Mg-1.5Zn-0.2Ca-0.2Ce alloy sheets processed via accumulated extrusion bonding (AEB) at 523 K were examined in this study. To investigate the microstructure evolution, samples corresponding to various process stages were taken from six locations parallel to the extrusion direction. Many twin boundaries were observed at the initial extrusion stage, and subsequently dynamic recrystallization (DRX) (especially ‘twin-assisted’ DRX and continuous DRX) was activated. With increasing strain, the matrix grains were gradually transformed into new DRXed grains, and the grains were significantly refined to 0.55 μm, whereas the grains grew to 3.1 μm outside the die. After the AEB process, the sheet exhibited almost the same texture as that of the as-received sheet with basal poles tilted to the extrusion direction by ~ ± 30°. The tensile test results revealed that, compared with the as-received sheet, the yield strength of AEBed sheets was improved as much as 50 MPa, resulting mainly from the grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Huang, New alloy materials-Magnesium alloys (China: China Railway Publishing House, 2017), pp. 1–405.

    Google Scholar 

  2. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, Acta Mater. 51, 2055 (2003).

    Article  Google Scholar 

  3. M. Drits, Z. Sviderskaya, L. Rokhlin, and N. Nikitina, Met. Sci. Heat Treat. 21, 887 (1979).

    Article  Google Scholar 

  4. D. Mizer and B.C. Peters, Metall. Mater. Trans. B 3, 3262 (1972).

    Article  Google Scholar 

  5. W. Liu, J. Dong, X. Song, J. Belnoue, F. Hofmann, W. Ding, and A. Korsunsky, Mater. Sci. Eng., A 528, 2250 (2011).

    Article  Google Scholar 

  6. H. Huang, G. Yuan, Z. Chu, and W. Ding, Mater. Sci. Eng. A 560, 241 (2013).

    Article  Google Scholar 

  7. X. Zeng, Y. Zhang, C. Lu, W. Ding, Y. Wang, and Y. Zhu, J Alloys Compd. 395, 213 (2005).

    Article  Google Scholar 

  8. L. Liu, X. Chen, F. Pan, Z. Wang, W. Liu, P. Cao, T. Yan, and X. Xu, Mater. Sci. Eng. A 644, 247 (2015).

    Article  Google Scholar 

  9. T. Peng, Q.D. Wang, and J.B. Lin, Mater. Sci. Eng. A 516, 23 (2009).

    Article  Google Scholar 

  10. K. Guan, B. Li, Q. Yang, X. Qiu, Z. Tian, D. Zhang, D. Zhang, X. Niu, W. Sun, X. Liu, and J. Meng, J Alloys Compd. 735, 1737 (2018).

    Article  Google Scholar 

  11. T. Zhang, H. Cui, X. Cui, E. Zhao, Y. Pan, R. Feng, Q. Jia, and J. Zhao, J Alloys Compd. 784, 1130 (2019).

    Article  Google Scholar 

  12. X. Heng, Y. Zhang, W. Rong, Y. Wu, and L. Peng, Mater. Des. 169, 107666 (2019).

    Article  Google Scholar 

  13. R. Zheng, T. Bhattacharjee, A. Shibata, T. Sasaki, K. Hono, M. Joshi, and N. Tsuji, Scr. Mater. 131, 1 (2017).

    Article  Google Scholar 

  14. Y. Zeng, B. Jiang, D. Huang, J. Dai, F. Pan, and J. Magnes, Alloy 1, 297 (2013).

    Article  Google Scholar 

  15. R. Alizadeh, R. Mahmudi, A. Ngan, Y. Huang, and T. Langdon, Mater. Sci. Eng. A 651, 786 (2016).

    Article  Google Scholar 

  16. F. Meng, J.M. Rosalie, A. Singh, H. Somekawa, and K. Tsuchiya, Scr. Mater. 78–79, 57 (2014).

    Article  Google Scholar 

  17. J. Xu, Q. Su, C. Wang, X. Wang, D. Shan, B. Guo, and T.G. Langdon, Adv. Eng. Mater. 21, 1800961 (2019).

    Article  Google Scholar 

  18. T.C. Lowe and R.Z. Valiev, JOM 56, 64 (2004).

    Article  Google Scholar 

  19. J. Lin, X. Wang, W. Ren, X. Yang, and Q. Wang, J. Mater. Sci. Technol. 32, 783 (2016).

    Article  Google Scholar 

  20. Q. Wang, Y. Mu, J. Lin, L. Zhang, and H.J. Roven, Mater. Sci. Eng. A 699, 26 (2017).

    Article  Google Scholar 

  21. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Scr. Mater. 46, 851 (2002).

    Article  Google Scholar 

  22. W. Kim, S. Hong, Y. Kim, S. Min, H. Jeong, and J. Lee, Acta Mater. 51, 3293 (2003).

    Article  Google Scholar 

  23. F. Schwarz, C. Eilers, and L. Krüger, Mater. Charact. 105, 144 (2015).

    Article  Google Scholar 

  24. X. Luo, T. Huang, Y. Wang, Y. Xin, and G. Wu, Sci. Rep. 9, 5428 (2019).

    Article  Google Scholar 

  25. Q.F. Wang, X. Xiao, X. Chen, and W. Chen, Mater. Sci. Forum. 551–552, 249 (2007).

    Article  Google Scholar 

  26. M.-Y. Zhan, Y.-Y. Li, and W.-P. Chen, Trans. Nonferrous Met. Soc. China 18, 309 (2008).

    Article  Google Scholar 

  27. T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, and F. Pan, J Alloys Compd. 745, 599 (2018).

    Article  Google Scholar 

  28. G. Wang, G. Huang, X. Chen, Q. Deng, A. Tang, B. Jiang, and F. Pan, Mater. Sci. Eng. A 705, 46 (2017).

    Article  Google Scholar 

  29. Y. Chai, B. Jiang, J. Song, B. Liu, G. Huang, D. Zhang, and F. Pan, Mater. Sci. Eng., A 746, 82 (2019).

    Article  Google Scholar 

  30. S. Biswas, B. Beausir, L.S. Toth, and S. Suwas, Acta Mater. 61, 5263 (2013).

    Article  Google Scholar 

  31. S.M. Fatemi and A. Zarei-Hanzaki, Mater. Sci. Eng. A 708, 230 (2017).

    Article  Google Scholar 

  32. F. Guo, D. Zhang, X. Yang, L. Jiang, S. Chai, and F. Pan, Mater. Sci. Eng. A 607, 383 (2014).

    Article  Google Scholar 

  33. S. Fatemi-Varzaneh, A. Zarei-Hanzaki, and J. Cabrera, J Alloys Compd. 509, 3806 (2011).

    Article  Google Scholar 

  34. Y. Huang, Y. Wang, X. Meng, L. Wan, J. Cao, L. Zhou, and J. Feng, J. Mater. Proc. Technol. 249, 331 (2017).

    Article  Google Scholar 

  35. N.L. Li, G.J. Huang, R.L. Xin, and Q. Liu, Sci. China Technol. Sci. 55, 490 (2012).

    Article  Google Scholar 

  36. S.H. Park, S.-H. Kim, H.S. Kim, and B.S. You, J. Alloys Compd. 648, 615 (2015).

    Article  Google Scholar 

  37. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, and B.H. Lu, Acta Mater. 157, 53 (2018).

    Article  Google Scholar 

  38. J.H. Lee, T. Lee, S.W. Song, S.H. Park, and C.S. Lee, Mater. Sci. Eng. A 619, 328 (2014).

    Article  Google Scholar 

  39. H. Yan, S. Xu, R. Chen, S. Kamado, T. Honma, and E. Han, J Alloys Compd. 566, 98 (2013).

    Article  Google Scholar 

  40. H. Zhang, W. Jin, J. Fan, W. Cheng, H.J. Roven, B. Xu, and H. Dong, Mater. Lett. 135, 31 (2014).

    Article  Google Scholar 

  41. T. Mukai, H. Somekawa, T. Inoue, and A. Singh, Scr. Mater. 62, 113 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51905366, 51604181, 51671041, 51671041 and U1610253), the Key Research and Development Program of Shanxi Province (No. 201603D111004), the Fund for Shanxi “1331 Project” Key Subjects Construction, Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2017157) and Taiyuan University of Science and Technology Scientific Research Initial Funding (20182030 and 20192008). This work was also supported by the Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment and Special Professor Support Program for Outstanding Young Scholars in Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingzhuang Han or Lifeng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, T., Zou, J., Ma, L. et al. Microstructure Evolution and Mechanical Properties of Mg-1.5Zn-0.2Ca-0.2Ce Alloy Processed by Accumulated Extrusion Bonding. JOM 72, 2597–2602 (2020). https://doi.org/10.1007/s11837-020-04181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04181-w

Navigation