Skip to main content
Log in

Role of Interfaces in Damage Initiation and Tolerance of Carbon Nanotube-Reinforced HfB2-ZrB2 Ceramics

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

HfB2-ZrB2 based ultra-high temperature ceramics (UHTCs) are used as protective tiles for leading edges and nose cones of the hypersonic vehicles that face harsh re-entry conditions. In the present work, the effect of SiC (20 vol.%) and carbon nanotube (CNT, 6 vol.%) incorporation on the room temperature damage initiation and wear damage tolerance of HfB2-ZrB2-based ceramics, consolidated via spark plasma sintering (SPS), is assessed. The wear rate decreased by almost > 90% in CNT-reinforced HfB2-ZrB2–SiC composites (for both scratch and fretting tests), and a significant increase in the Hertzian contact pressure (from ~ 15 GPa, in case of fretting to ~ 21 GPa, in case of scratch wear) and scratch hardness (from ~ 27 GPa to ~ 46 GPa, respectively) was observed with synergistic reinforcements of SiC and CNT. The study examines synergistic interfacial strengthening by SiC and CNT reinforcement in HfB2-ZrB2 ceramic composites as potential materials for aerospace applications where damage initiation and tolerance are issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Zapata-Solvas, D.D. Jayaseelan, P.M. Brown, W.E. Lee, Adv. Appl. Ceram. 114, 407 (2015).

    Google Scholar 

  2. W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications (Hoboken: Wiley, 2014), p. 458.

    Google Scholar 

  3. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, J. Am. Ceram. Soc. 90, 1347 (2007).

    Google Scholar 

  4. N. Kumar, G. Gautam, R. Kumar, and A. Mohan, Tribol. Int. 97, 313 (2016).

    Google Scholar 

  5. A. Nisar and K. Balani, Adv. Eng. Mater. 19(5), 1600713 (2017).

    Google Scholar 

  6. R. Jaworski, P. Lech, R. Francine, K. Stefan, and P. Fabrice, Surf. Coat. Technol. 202, 2644 (2008).

    Google Scholar 

  7. K. Pereira, T. Yue, and M.A. Wahab, Tribiol. Int. 110, 222 (2017).

    Google Scholar 

  8. K. Sikdar, S. Shekhar, and K. Balani, Wear 318, 177 (2014).

    Google Scholar 

  9. S. Chakraborty, A.R. Mallick, D. Debnath, and P.K. Das, Int. J. Refract. Met. Hard Mater. 48, 150 (2015).

    Google Scholar 

  10. D. Debnath, S. Chakraborty, A.R. Mallick, R.K. Gupta, A. Ranjan, and P.K. Das, Adv. Appl. Ceram. 114, 45 (2015).

    Google Scholar 

  11. D. Ghosh, G. Subhash, R. Radhakrishnan, and T.S. Sudarshan, Acta Mater. 56, 3011 (2008).

    Google Scholar 

  12. A. Nisar and K. Balani, Coatings 7, 110 (2017).

    Google Scholar 

  13. S. Awasthi, C. Prabha, and K. Balani, Mater. Res. Bull. 99, 61 (2018).

    Google Scholar 

  14. M. Haas, K. El, U. Cihak-bayr, A. Pauschitz, and M. Gröschl, Tribiol. Int. 141, 105912 (2020).

    Google Scholar 

  15. E. Eakins, D.D. Jayaseelan, and W.E. Lee, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 42, 878 (2011).

    Google Scholar 

  16. A. Fantetti, L.R. Tamatam, M. Volvert, I. Lawal, L. Liu, L. Salles, M.R.W. Brake, C.W. Schwingshackl, and D. Nowell, Tribiol. Int. 138, 111 (2019).

    Google Scholar 

  17. B. Basu, J. Vleugels, and O. Van Der Biest, Wear 250–251, 631 (2001).

    Google Scholar 

  18. C.X. Li, J. Xia, and H. Dong, Wear 261, 693 (2006).

    Google Scholar 

  19. A. Nisar, S. Ariharan, and K. Balani, Direction 15, 55 (2015).

    Google Scholar 

  20. F. Alam, A. Kumar, A.K. Patel, R.K. Sharma, and K. Balani, JOM 67, 688 (2015).

    Google Scholar 

  21. R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, and K. Balani, Mater. Des. 98, 155 (2016).

    Google Scholar 

  22. B. Bhushan, Introduction to Tribology (New York: Wiley, 2013), p. 368.

    Google Scholar 

  23. M. Amiri and M.M. Khonsari, Entropy 12, 1021 (2010).

    Google Scholar 

  24. S. Fouvry, T. Liskiewicz, Ph. Kapsa, S. Hannel, and E. Sauger, Wear 255, 287 (2003).

    Google Scholar 

  25. A. Ramalho and J.C. Miranda, Wear 260, 361 (2006.)

    Google Scholar 

  26. S. Awasthi, S. Goel, C.P. Pandey, and K. Balani, JOM 69, 227 (2017).

    Google Scholar 

  27. M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, and S.J. Causey, J. Eur. Ceram. Soc. 19, 2405 (1999).

    Google Scholar 

  28. K. Balani, S.P. Harimkar, A. Keshri, Y. Chen, and N.B. Dahotre, A. Agarwal, Acta Mater. 56, 5984 (2008).

    Google Scholar 

  29. A.T. Akono, N.X. Randall, and F.J. Ulm, J. Mater. Res. 27, 485 (2012).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Advanced Center for Material Science, IIT Kanpur, for use of the SEM, microscratch testing and optical profilometer facility. KB acknowledges funding from Impacting Research Innovation and Technology (IMPRINT, sanction number: IMP/2018/000739) from the Science & Engineering Research Board (SERB), Department of Science and Technology, Government of India. Drs. S. Ariharan, Rita Maurya and Fahad Alam are acknowledged for their technical assistance throughout this work.

Author information

Authors and Affiliations

Authors

Contributions

KB conceptualized the idea and procured the funding. SD planned and performed the experiments and prepared the first draft; SA and AN assisted in the analysis. SD, KB, SA and AN edited the paper.

Corresponding author

Correspondence to Kantesh Balani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, S., Awasthi, S., Nisar, A. et al. Role of Interfaces in Damage Initiation and Tolerance of Carbon Nanotube-Reinforced HfB2-ZrB2 Ceramics. JOM 72, 2207–2218 (2020). https://doi.org/10.1007/s11837-020-04164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04164-x

Keywords

Navigation