Skip to main content
Log in

Machine Learning in Additive Manufacturing: A Review

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this review article, the latest applications of machine learning (ML) in the additive manufacturing (AM) field are reviewed. These applications, such as parameter optimization and anomaly detection, are classified into different types of ML tasks, including regression, classification, and clustering. The performance of various ML algorithms in these types of AM tasks are compared and evaluated. Finally, several future research directions are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Abbreviation :

Meaning

3D:

Three dimensional

AE:

Acoustic emission

AI:

Artificial intelligence

AM:

Additive manufacturing

BJ:

Binder jetting

BoW:

Bag of words

BP:

Backpropagation

CNN:

Convolutional neural network

CT:

Computed tomography

CV:

Cross-validation

DA:

Discriminant analysis

DBN:

Deep belief network

DED:

Direct energy deposition

DT:

Decision tree

FFF:

Fused filament fabrication

FN:

False negative

FP:

False positive

GP:

Gaussian process

KNN:

k-Nearest neighbors

LOOCV:

Leave-one-out cross-validation

L-PBF:

Laser powder bed fusion

ME:

Material extrusion

MJ:

Material jetting

ML:

Machine learning

NN:

Neural network

PBF:

Powder bed fusion

PCA:

Principal component analysis

PSP:

Process-structure–property

RF:

Random forest

RMSE:

Root mean square error

RT:

Regression tree

SL:

Sheet lamination

SOM:

Self-organizing map

SVM:

Support vector machine

TN:

True negative

TP:

True positive

UQ:

Uncertainty quantification

References

  1. ASTM F42. Resource document. https://www.astm.org/COMMIT/SUBCOMMIT/F42.htm. Accessed 28 February 2020

  2. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed. (New York: Springer, 2015), pp. 1–18.

    Book  Google Scholar 

  3. E. Alpaydin, Introduction to Machine Learning, 3rd ed. (London: The MIT Press, 2009), p. 3.

    Google Scholar 

  4. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  5. W.J. Sames, F. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  6. Y. Zhang, L. Wu, X. Guo, S. Kane, Y. Deng, Y.-G. Jung, J.-H. Lee, and J. Zhang, J. Mater. Eng. Perform. 27, 1 (2018).

    Article  Google Scholar 

  7. M.M. Francois, A. Sun, W.E. King, N.J. Herson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T.S. Haut, J. Bakosi, J.W. Gibbs, V. Livescu, W. Vander, A. Scott, A.J. Clarke, M.W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A.T. Anderson, J.-L. Fattebert, R.M. Ferencz, N.E. Hodge, S.A. Khairallah, and O. Walton, Modeling of additive manufacturing processes for metals: challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 21, 198 (2017).

    Article  Google Scholar 

  8. M. Markl and C. Körner, Annu. Rev. Mater. Res. 46, 93 (2016).

    Article  Google Scholar 

  9. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Mater. Des. 95, 431 (2016).

    Article  Google Scholar 

  10. H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, Bus. Inf. Syst. Eng. 6, 239 (2014).

    Article  Google Scholar 

  11. R.S. Sutton and A.G. Barto, Reinforcement Learning: An Introduction, 2nd ed. (London: The MIT Press, 2018), pp. 1–3.

    MATH  Google Scholar 

  12. X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Eng. 5, 721 (2019).

    Article  Google Scholar 

  13. National Academies of Sciences, Engineering, and Medicine. Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop, 1st ed. (Washington, DC: The National Academies Press, 2019).

  14. G. Tapia, S. Khairallah, M. Matthews, W.E. King, and A. Elwany, Int. J. Adv. Manuf. Technol. 94, 3591 (2018).

    Article  Google Scholar 

  15. Z. Hu and S. Mahadevan, The. Int. J. Adv. Manuf. Tech. 93, 2855 (2017).

    Article  Google Scholar 

  16. L. Meng and J. Zhang, JOM-J. Min. Met. Mat. S. 72, 420 (2020).

    Article  Google Scholar 

  17. T. Wang, T.-H. Kwok, C. Zhou, and S. Vader, J. Manuf. Syst. 47, 83 (2018).

    Article  Google Scholar 

  18. M. Grasso and B.M. Colosimo, Meas. Sci. Technol. 28, 044005 (2017).

    Article  Google Scholar 

  19. M. Mahesh, Y. Wong, J. Fuh, and H. Loh, Rapid Prototyp J. 10, 123 (2004).

    Article  Google Scholar 

  20. J. Francis and L. Bian, Manuf. Lett. 20, 10 (2019).

    Article  Google Scholar 

  21. S.L. Chan, Y. Lu, and Y. Wang, J. Manuf. Syst. 46, 115 (2018).

    Article  Google Scholar 

  22. Z. Zhu, N. Anwer, Q. Huang, and L. Mathieu, CIRP Ann. 67, 157 (2018).

    Article  Google Scholar 

  23. G. Tapia, A. Elwany, and H. Sang, Addit. Manuf. 12, 282 (2016).

    Google Scholar 

  24. C. Kamath, Int. J. Adv. Manuf. Technol. 86, 1659 (2016).

    Article  Google Scholar 

  25. F. Caiazzo and A. Caggiano, Mat. 11, 444 (2018).

    Google Scholar 

  26. W. Rong-Ji, L. Xin-hua, W. Qing-ding, and W. Lingling, The. Int. J. Adv. Manuf. Technol. 42, 1035 (2009).

    Article  Google Scholar 

  27. J. Zhang, P. Wang, and R.X. Gao, Comput. Ind. 107, 11 (2019).

    Article  Google Scholar 

  28. Z. Li, Z. Zhang, J. Shi, and D. Wu, Robot. Cim-Int. Manuf. 57, 488 (2019).

    Article  Google Scholar 

  29. M. Mozaffar, A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, K. Ehmanna, and J. Cao, Manuf. Lett. 18, 35 (2018).

    Article  Google Scholar 

  30. L. Song, W. Huang, X. Han, J. Mazumder, and I.E.E.E.T. Ind, Electron. 64, 633 (2016).

    Google Scholar 

  31. S. Chowdhury and A. Sarn, ASME Int. Manuf. Sci. Eng. Conf., Proc. (2016) https://doi.org/10.1115/msec2016-8784.

  32. T. Kohonen, Neural Netw. 1, 3 (1988).

    Article  Google Scholar 

  33. D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Cogn. Model. 5, 1 (1988).

    Google Scholar 

  34. A.R. Barron, Nato. Adv. Sci. I. C-Mat. 335, 561 (1991).

    Google Scholar 

  35. F. Girosi, M. Jones, and T. Poggio, Neural Comput. 7, 219 (1995).

    Article  Google Scholar 

  36. S. Haykin, Neural networks: a comprehensive foundation, 1st ed. (Prentice Hall PTR: Upper Saddle River, NJ, 1994).

    MATH  Google Scholar 

  37. C.K. Williams and C.E. Rasmussen, Gaussian Processes for Machine Learning, 2nd ed. (London: MIT Press, 2006).

    MATH  Google Scholar 

  38. R. Rai, J. Elmer, T. Palmer, and T. DebRoy, J. Phys. D Appl. Phys. 40, 5753 (2007).

    Article  Google Scholar 

  39. X. Yao, S.K. Moon, and G. Bi, Rapid Prototyping J. 23, 983 (2017).

    Article  Google Scholar 

  40. Y. Zhang, G.S. Hong, D. Ye, K. Zhu, and J.Y. Fuh, Mater. Des. 156, 458 (2018).

    Article  Google Scholar 

  41. L. Scime and J. Beuth, Addit. Manuf. 19, 114 (2018).

    Article  Google Scholar 

  42. L. Scime and J. Beuth, Addit. Manuf. 24, 273 (2018).

    Article  Google Scholar 

  43. J. Mazumder, Proc. CIRP 36, 187 (2015).

    Article  Google Scholar 

  44. M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M.A. Tschopp, and L. Bian, J. Manuf. Syst. 47, 69 (2018).

    Article  Google Scholar 

  45. M.S. Tootooni, A. Dsouza, R. Donovan, P.K. Rao, Z.J. Kong, and P. Borgesen, J. Eng. Ind. 139, 091005 (2017).

    Google Scholar 

  46. K. Aoyagi, H. Wang, H. Sudo, and A. Chiba, Addit. Manuf. 27, 353 (2019).

    Google Scholar 

  47. D. Ye, G.S. Hong, Y. Zhang, K. Zhu, and J.Y.H. Fuh, The. Int. J. Adv. Manuf. Tech. 96, 1 (2018).

    Article  Google Scholar 

  48. Z. Shen, X. Shang, M. Zhao, X. Dong, G. Xiong, and F.-Y. Wang, A learning-based framework for error compensation in 3-d printing. IEEE T. Cybern. 49, 4042 (2019).

    Article  Google Scholar 

  49. R. Jafari-Marandi, M. Khanzadeh, W. Tian, B. Smith, and L. Bian, J. Manuf. Syst. 51, 29 (2019).

    Article  Google Scholar 

  50. C. Gobert, E.W. Reutzel, J. Petrich, A.R. Nassar, and S. Phoha, Addit. Manuf. 21, 517 (2018).

    Google Scholar 

  51. A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, and R. Teti, CIRP Ann. 68, 451 (2019).

    Article  Google Scholar 

  52. S.A. Shevchik, C. Kenel, C. Leinenbach, and K. Wasmer, Addit. Manuf. 21, 598 (2018).

    Google Scholar 

  53. J.R. Quinlan, Mach. Learn. 1, 81 (1986).

    Google Scholar 

  54. C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995).

    Google Scholar 

  55. C.-W. Hsu and C.-J. Lin, IEEE T. Neural Netw. 13, 415 (2002).

    Article  Google Scholar 

  56. A. Krizhevsky, I. Sutskever, and G.E. Hinton, Adv. Neur. In., 1097 (2012).

  57. P. Bühlmann and S. Van De Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications, 1st ed. (Springer : Berlin, Germany, 2011).

    Book  MATH  Google Scholar 

  58. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 1st ed. (New York: Springer, 2013).

    Book  MATH  Google Scholar 

  59. A.Y. Ng, Proceedings of the twenty-first international conference on machine learning, 78 (2004).

  60. K. Hornik, M. Stinchcombe, and H. White, Neural Netw 2, 359 (1989).

    Article  Google Scholar 

  61. E. Popova, T.M. Rodgers, X. Gong, A. Cecen, J.D. Madison, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. 6, 54 (2017).

    Article  Google Scholar 

  62. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014).

    MathSciNet  Google Scholar 

  63. M. Khanzadeh, P. Rao, R. Jafari-Marandi, B.K. Smith, M.A. Tschopp, and L. Bian, J. Eng. Ind. 140, 031011 (2018).

    Google Scholar 

  64. M. Khanzadeh, S. Chowdhury, M.A. Tschopp, H.R. Doude, M. Marufuzzaman, and L. Bian, IISE Transactions 51, 437 (2019).

    Article  Google Scholar 

  65. H. Wu, Z. Yu, and Y. Wang, Measurement 136, 445 (2019).

    Article  Google Scholar 

  66. Y. Yang, M. He, and L. Li, Proc. CIRP 80, 741 (2019).

    Article  Google Scholar 

  67. Z. Wang, P. Liu, Y. Xiao, X. Cui, Z. Hu, and L. Chen, J. Eng. Ind. 141, 081004 (2019).

    Google Scholar 

Download references

Acknowledgement

The work is conducted under CCDC Army Research Laboratory Cooperative Research and Development Agreement 19-013-001. This work is partially supported by “Human Resources Program in Energy Technology (No. 20194030202450)” and “Power Generation & Electricity Delivery Grant (No. 20193310100030)” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., McWilliams, B., Jarosinski, W. et al. Machine Learning in Additive Manufacturing: A Review. JOM 72, 2363–2377 (2020). https://doi.org/10.1007/s11837-020-04155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04155-y

Navigation