Skip to main content
Log in

Synthesizing the Hard Magnetic Low-Temperature Phase of MnBi Alloy: Challenges and Prospects

  • Advanced Processing and Additive Manufacturing of Functional Magnetic Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The low-temperature phase (LTP) of the binary MnBi alloy system is well recognized for its potential to yield the highest maximum energy product value among the rare earth element-free permanent magnets. However, studies have revealed that the magnetic properties of LTP-MnBi are extremely sensitive to the purity of the LTP phase, and the major challenge lies in the formulation and selection of the appropriate processing techniques for preparing pure LTP-MnBi. During the last 2 decades, up-gradation in the purity of LTP-MnBi has been achieved through the development of new preparation methods. A review is presented on the recent advancements made in developing high-purity LTP-MnBi through the newly developed routes and the effect of the process parameters on the purity, physical and magnetic properties of the LTP-MnBi system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Market Research Report, in GIR Publ. (2018), pp. 1–150.

  2. I.R. Harris and G.W. Jewell, in Woodhead Publ. Ser. Energy (2012), pp. 600–639.

  3. Y. Chen, G. Gregori, A. Leineweber, F. Qu, C. Chen, T. Tietze, H. Kronmüller, G. Schütz, and E. Goering, Scr. Mater. 107, 131 (2015)

    Google Scholar 

  4. W. Xie, E. Polikarpov, J.P. Choi, M.E. Bowden, K. Sun, and J. Cui, J. Alloys Compd. 680, 1 (2016)

    Google Scholar 

  5. N.V. Rama-Rao, A.M. Gabay, W.F. Li, and G.C. Hadjipanayis, J. Phys. D. Appl. Phys. 46, 1 (2013)

    Google Scholar 

  6. N.R. Christopher, N. Singh, S.K. Singh, B. Gahtori, S.K. Mishra, A. Dhar, and V.P.S. Awana, J. Supercond. Nov. Magn. 26, 3161 (2013)

    Google Scholar 

  7. X. Guo, X. Chen, Z. Altounian, J.O. Ström-Olsen, and J.O. Ström-Olsen, J. Appl. Phys. 73, 6275 (1993)

    Google Scholar 

  8. X. Guo, X. Chen, Z. Altounian, J.O. Strom-Olsen, and J.O. Ström-Olsen, Phys. Rev. B 46, 578 (1992)

    Google Scholar 

  9. A.M.M. Gabay, G.C.C. Hadjipanayis, and J. Cui, AIP Adv. 8, 1 (2018)

    Google Scholar 

  10. Z. Xiang, T. Wang, S. Ma, L. Qian, Z. Luo, Y. Song, H. Yang, and W. Lu, J. Alloys Compd. 741, 951 (2018)

    Google Scholar 

  11. S.M. Kim, H. Moon, H. Jung, S.M. Kim, H.S. Lee, H. Choi-Yim, and W. Lee, J. Alloys Compd. 708, 1245 (2017)

    Google Scholar 

  12. C. Li, D. Guo, B. Shao, K. Li, B. Li, and D. Chen, Mater. Res. Express 1 (2017).

  13. Data Used from Source:www.scopus.com (2019).

  14. C. Guillaud, Ferromagnetisme Des Alliages Binaires de Manganese, 1943.

  15. M.A. McGuire, H. Cao, B.C. Chakoumakos, and B.C. Sales, Phys. Rev. B 90, 174425 (2014)

    Google Scholar 

  16. E. Adams, W.M. Hubbard, and A.M. Syeles, Appl. Phys. 23, 1 (1952)

    Google Scholar 

  17. R.R. Heikes, Phys. Rev. 99, 446 (1955)

    Google Scholar 

  18. B.W. Roberts, Phys. Rev. 104, 607 (1956)

    Google Scholar 

  19. A.F. Andresen, J.E. Engebretsen, and J. Refsnes, Acta Chem. Scand. 26, 175 (1972)

    Google Scholar 

  20. V.P. Antropov, V.N. Antonov, L.V. Bekenov, A. Kutepov, and G. Kotliar, Phys. Rev. B 90, 054404 (2014)

    Google Scholar 

  21. F. Yin, and G. Nanju, J. Mater. Sci. Technol. 12, 335 (1996)

    Google Scholar 

  22. V. Basso, E.S. Olivetti, L. Martino, and M. Küpferling, Int. J. Refrig. 37, 266 (2014)

    Google Scholar 

  23. R.G. Pirich, and D.J.L. Jr, J. Appl. Phys. 50, 2425 (1979)

    Google Scholar 

  24. M.R. Notis, D.M. Shaha, S.P. Young, and C.D. Graham, IEEE Trans. Magn. 15, 957 (1979)

    Google Scholar 

  25. T.U. Chen, J. Appl. Phys. 45, 2358 (1974)

    Google Scholar 

  26. J. Cui, J.P. Choi, G. Li, E. Polikarpov, J. Darsell, M.J. Kramer, N.A. Zarkevich, L.L. Wang, D.D. Johnson, M. Marinescu, Q.Z. Huang, H. Wu, N.V. Vuong, and J.P. Liu, J. Appl. Phys. 115, 17A743 (2014)

    Google Scholar 

  27. J.B. Yang, Y.C.B. Yang, X.G. Chen, X.B. Ma, J.Z. Han, Y.C.B. Yang, S. Guo, A.R. Yan, Q.Z. Huang, M.M. Wu, and D.F. Chen, Appl. Phys. Lett. 99, 082505 (2011)

    Google Scholar 

  28. K. Cenzual, L.M. Gelato, M. Penzo, and E. Parthé, Acta Crystallogr. Sect. B 47, 433 (1991)

    Google Scholar 

  29. V. Ly, X. Wu, L. Smillie, T. Shoji, A. Kato, A. Manabe, and K. Suzuki, J. Alloys Compd. 615, S285 (2014)

    Google Scholar 

  30. V. Nguyen, N. Poudyal, X. Liu, J.P. Liu, K. Sun, M. Kramer, and J. Cui, IEEE Trans. Magn. 9464, 1 (2014)

    Google Scholar 

  31. Y.C. Chen, S. Sawatzki, S. Ener, H. Sepehri-Amin, A. Leineweber, G. Gregori, F. Qu, S. Muralidhar, T. Ohkubo, K. Hono, O. Gutfleisch, H. Kronmüller, G. Schütz, and E. Goering, AIP Adv. 6, 1 (2016)

    Google Scholar 

  32. Y.B. Yang, J.Z. Wei, X.L. Peng, Y.H. Xia, X.G. Chen, R. Wu, H.L. Du, J.Z. Han, C.S. Wang, Y.C. Yang, and J.B. Yang, J. Appl. Phys. 115, 1 (2014)

    Google Scholar 

  33. V. Van Nguyen, and T.X. Nguyen, Phys. B Condens. Matter 1 (2016).

  34. J. Cui, J.P. Choi, G. Li, E. Polikarpov, J. Darsell, N. Overman, M. Olszta, D. Schreiber, M. Bowden, and T. Droubay, J. Phys. Condens. Matter 26, 1 (2014)

    Google Scholar 

  35. J. Cui, J.-P. Choi, E. Polikarpov, M.E. Bowden, W. Xie, G. Li, Z. Nie, N. Zarkevich, M.J. Kramer, and D. Johnson, Acta Mater. 79, 374 (2014)

    Google Scholar 

  36. B. Li, Y. Ma, B. Shao, C. Li, D. Chen, J.C. Sun, Q. Zheng, and X. Yin, Phys. B Condens. Matter 530, 322 (2018)

    Google Scholar 

  37. C. Chinnasamy, M.M. Jasinski, A. Ulmer, W. Li, G. Hadjipanayis, and J. Liu, IEEE Trans Magn. 48, 3641 (2012)

    Google Scholar 

  38. J.M.N. van Goor, J. Appl. Phys. 39, 5471 (1968)

    Google Scholar 

  39. H. Yoshida, T. Shima, T. Takahashi, and H. Fujimori, in Mater. Trans. JIM Fall Meet. (1999), pp. 455–458.

  40. R.G. Pirich, D.J.L. Jr, and G. Busch, IEEE Trans. Magn. 15, 1754 (1979)

    Google Scholar 

  41. R.G. Pirich, IEEE Trans Magn. 16, 1065 (1980)

    Google Scholar 

  42. X. Li, Z. Ren, G. Cao, Y. Fautrelle, and C. Esling, Acta Mater. 59, 6297 (2011)

    Google Scholar 

  43. X. Li, Z. Ren, and Y. Fautrelle, Philos. Mag. Lett. 89, 475 (2009)

    Google Scholar 

  44. T. Fu, W.R. Wilcox, and D.J. Larson, J. Cryst. Growth 57, 189 (1982)

    Google Scholar 

  45. W.R. Wilcox, K. Doddi, M. Nair, and D.J.L. Jr, Adv. Space. Ree. 3, 79 (1983)

    Google Scholar 

  46. F. Li, L.L. Regel, and W.R. Wilcox, J. Cryst. Growth 223, 251 (2001)

    Google Scholar 

  47. G.S. Xu, C.S. Lakshmi, and R.W. Smith, J. Mater. Sci. Lett. 8, 1113 (1989)

    Google Scholar 

  48. X. Guo, A. Zaluska, Z. Altounian, and J.O. Ström-Olsen, J. Mater. Res. 5, 2646 (1990)

    Google Scholar 

  49. X. Guo, A. Zaluska, Z. Altounian, and J.O.O. Strom-Olsen, Mater. Sci. Eng. A 133, 509 (1991)

    Google Scholar 

  50. Y.B. Yang, X.G. Chen, R. Wu, J.Z. Wei, X.B. Ma, J.Z. Han, H.L. Du, S.Q. Liu, C.S. Wang, Y.C. Yang, Y. Zhang, and J.B. Yang, J. Appl. Phys. 111, 07E312 (2012)

    Google Scholar 

  51. Y. Mitsui, R.Y. Umetsu, K. Takahashi, and K. Koyama, J. Magn. Magn. Mater. 453, 231 (2018)

    Google Scholar 

  52. P.Z. Si, Y. Yang, L.L. Yao, H.D. Qian, H.L. Ge, J. Park, K.C. Chung, and C.J. Choi, J. Magn. Magn. Mater. 476, 243 (2019)

    Google Scholar 

  53. N.M. Lam, T.M. Thi, P.T. Thanh, N.H. Yen, and N.H. Dan, Mater. Trans. 56, 1394 (2015)

    Google Scholar 

  54. A. Szlaferek, and A. Wrzeciono, Acta Phys. Pol. A 92, 315 (1997)

    Google Scholar 

  55. N.V. Rama Rao, A.M. Gabay, and G.C. Hadjipanayis, J. Phys. D. Appl. Phys. 46, 062001 (2013)

    Google Scholar 

  56. S. Yoon, S. J. Choi, and Y. S. Kwon, IEEE 149 (2004).

  57. A. B. Mallick, A. Sarkar, and D. Sur, Indian Patent No. 201931009142 (2019).

  58. K.Y.Y. Ko, S.J.J. Choi, S.K.K. Yoon, and Y.S.S. Kwon, J. Magn. Magn. Mater. 310, e887 (2007)

    Google Scholar 

  59. J. Shen, H. Cui, X. Huang, M. Gong, and W. Qin, RSC Adv. 5, 5567 (2014)

    Google Scholar 

  60. A. Kirkeminde, J. Shen, M. Gong, J. Cui, and S. Ren, Chem. Mater. A (2015).

  61. N.V. Rama Rao, A.M.M. Gabay, X. Hu, and G.C.C. Hadjipanayis, J. Alloys Compd. 586, 349 (2014)

    Google Scholar 

  62. F. Heusler, Angew. Chemie - Int. Ed. 17, 260 (1904)

    Google Scholar 

  63. T. Suwa, Y. Tanaka, G. Mankey, R. Schad, and T. Suzuki, AIP Adv. 6, 056226 (2016)

    Google Scholar 

  64. K. Kanari, C. Sarafidis, M. Gjoka, D. Niarchos, and O. Kalogirou, J. Magn. Magn. Mater. 426, 691 (2017)

    Google Scholar 

  65. R. Skomski and D. J. Sellmyer, in Handb. Adv. Magn. Mater. (2008), pp. 1–57.

  66. C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001)

    Google Scholar 

  67. E.S. Olivetti, C. Curcio, L. Martino, M. Küpferling, and V. Basso, J. Alloys Compd. 643, S270 (2015)

    Google Scholar 

  68. S. Saha, M.Q. Huang, C.J. Thong, B.J. Zande, V.K. Chandhok, S. Simizu, R.T. Obermyer, and S.G. Sankar, J. Appl. Phys. 87, 6040 (2000)

    Google Scholar 

  69. M. Kishimoto, and K. Wakai, Jpn. J. Appl. Phys. 16, 459 (1977)

    Google Scholar 

  70. D.T. Zhang, W.T. Geng, M. Yue, W.Q. Liu, J.X. Zhang, J.A. Sundararajan, and Y. Qiang, J. Magn. Magn. Mater. 324, 1887 (2012)

    Google Scholar 

  71. S. Saha, R.T. Obermyer, B.J. Zande, V.K. Chandhok, S. Simizu, S.G. Sankar, and J.A. Horton, J. Appl. Phys. 91, 8525 (2002)

    Google Scholar 

  72. Z. Xiang, Y. Song, D. Pan, Y. Shen, L. Qian, Z. Luo, Y. Liu, H. Yang, H. Yan, and W. Lu, J. Alloys Compd. 744, 432 (2018)

    Google Scholar 

  73. N.V. Rama Rao, and G.C. Hadjipanayis, J. Alloys Compd. 629, 80 (2015)

    Google Scholar 

  74. S. Kavita, V.V. Ramakrishna, A. Srinivasan, and R. Gopalan, Mater. Res. Express 3, 056102 (2016)

    Google Scholar 

  75. D.T. Zhang, S. Cao, M. Yue, W.Q. Liu, J.X. Zhang, and Y. Qiang, J. Appl. Phys. 109, 07A722 (2011)

    Google Scholar 

  76. B. Li, W. Liu, X.T.X.G.T.G. Zhao, W.J.J. Gong, X.T.X.G.T.G. Zhao, H.L.L. Wang, D. Kim, C.J.J. Choi, and Z.D.D. Zhang, J. Magn. Magn. Mater. 372, 12 (2014)

    Google Scholar 

  77. T.J. Williams, A.E. Taylor,A.D. Christianson, S.E. Hahn, R.S. Fishman, D.S. Parker, M.A. McGuire, B.C. Sales, and M.D. Lumsden ppl Phys Lett (2016)

  78. N.A. Zarkevich, L.-L. Wang, and D.D. Johnson, APL Mater. 2, 032103 (2014)

    Google Scholar 

  79. J.B. Yang, W.B. Yelon, Q. Cai, M. Korecki, S. Roy, N. Ali, P. Herriter, W.J. James, Q. Cai, M. Kornecki, S. Roy, N. Ali, and P. L’Heritier, J. Phys. Condens. Matter. 14, 6509 (2002)

    Google Scholar 

  80. K. Kang, J. Alloys Compd. 439, 201 (2007)

    Google Scholar 

  81. J.B. Yang, W.B. Yelon, W.J. James, Q. Cai, S. Roy, and N. Ali, J. Appl. Phys. 91, 7866 (2002)

    Google Scholar 

  82. X. Li, Z. Ren, Y. Fautrelle, and K. Deng, J. Magn. Magn. Mater. 321, 2694 (2009)

    Google Scholar 

  83. K. Oikawa, Y. Mitsui, K. Koyama, and K. Anzai, Mater. Trans. 52, 2032 (2011)

    Google Scholar 

  84. Y. Mitsui, R.Y. Umetsu, K. Koyama, and K. Watanabe, J. Alloys Compd. 615, 131 (2014)

    Google Scholar 

  85. K. Koyama, Y. Mitsui, E.S. Choi, Y. Ikehara, E.C. Palm, and K. Watanabe, J. Alloys Compd. 509, L78 (2011)

    Google Scholar 

  86. K. Koyama, Y. Mitsui, and K. Watanabe, Sci. Technol. Adv. Mater. 9, 024204 (2008)

    Google Scholar 

  87. K. Koyama, T. Onogi, Y. Mitsui, Y. Nakamori, S. Orimo, and K. Watanabe, Mater. Trans. 48, 2414 (2007)

    Google Scholar 

  88. K. Suzuki, X. Wu, V. Ly, T. Shoji, A. Kato, and A. Manabe, J. Appl. Phys. 111, 07E303 (2012)

    Google Scholar 

  89. S. Kavita, U.M.R. Seelam, D. Prabhu, and R. Gopalan, J. Magn. Magn. Mater. 377, 485 (2015)

    Google Scholar 

  90. X.F. Xiao, P.Z. Si, H. Feng, Q.L. Ye, S.J. Yu, H.L. Ge, and J.J. Liu, J. Appl. Phys. 115, 17A752 (2014)

    Google Scholar 

  91. K. Kang, L.H. Lewis, and A.R. Moodenbaugh, J. Appl. Phys. 97, 10K302 (2005)

    Google Scholar 

  92. K. Kang, L.H. Lewis, and A.R. Moodenbaugh, Appl. Phys. Lett. 87, 062505 (2005)

    Google Scholar 

  93. Y. Liu, J. Zhang, S. Cao, G. Jia, X. Zhang, Z. Ren, X. Li, C. Jing, and K. Deng, Solid State Commun. 138, 104 (2006)

    Google Scholar 

  94. V. Van Nguyen, and T.X. Nguyen, J. Electron. Mater. 46, 3333 (2017)

    Google Scholar 

  95. S. Sabet, E. Hildebrandt, F. Romer, I. Radulov, H. Zhang, M. Farle, and L. Alff, IEEE Trans Magn. 9464, 1 (2016)

    Google Scholar 

  96. N. Van Vuong, and N.X. Truong, J. Sci. Technol. 54, 50 (2016)

    Google Scholar 

  97. V.V. Nguyen, N. Poudyal, X.B. Liu, J.P. Liu, K. Sun, M.J. Kramer, and J. Cui, Mater. Res. Express 1, 036108 (2014)

    Google Scholar 

  98. T. Saito, R. Nishimura, and D. Nishio-Hamane, J. Magn. Magn. Mater. 349, 9 (2014)

    Google Scholar 

  99. Y.B. Yang, X.G. Chen, S. Guo, A.R. Yan, Q.Z. Huang, M.M. Wu, D.F. Chen, Y.C. Yang, and J.B. Yang, J. Magn. Magn. Mater. 330, 106 (2013)

    Google Scholar 

  100. P. Kharel, V.R. Shah, R. Skomski, J.E. Shield, and D.J. Sellmyer, IEEE Trans. Magn. 49, 3318 (2013)

    Google Scholar 

  101. L. Yong-Sheng, Z. Jin-Cang, R. Zhong-Ming, G. Min-An, Y. Jing-Jing, C. Shi-Xun, and Y. Zheng-Long, Chin. Phys. Lett. 27, 097502 (2010)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Engineering Research Board (SERB) under the Department of Science and Technology (DST), Government of India (F.No. EMR/2016/005363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Basu Mallick.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Basu Mallick, A. Synthesizing the Hard Magnetic Low-Temperature Phase of MnBi Alloy: Challenges and Prospects. JOM 72, 2812–2825 (2020). https://doi.org/10.1007/s11837-020-04134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04134-3

Navigation