Skip to main content
Log in

Three-Dimensional Structural Imaging of Rock Components and Methods for Component Segmentation and Extraction

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The variations in the internal composition and microstructure of rocks result in uncertainty in their macroscopic mechanical properties. To determine the internal composition and microscopic three-dimensional (3D) structure of a rock specimen accurately, the analog computed tomography (CT) signal from a sample was digitized and the x-ray absorption values (CT values) were converted into a two-dimensional digital matrix. The filtered backprojection algorithm was then used to reconstruct the 3D projection of the microscopic components of the rock. The nonlocal means algorithm was then used to correct for beam hardening, thereby improving the resolution of the boundaries of the microstructures. Based on the improved Otsu algorithm, the reconstructed 3D image of the rock was then segmented to extract the pores, cement, and mineral particles in the sandstone. In this way, the geometrical shape and spatial distribution of these components inside the rock could be accurately obtained. This approach is important because it can be used to realize 3D microscopic geometric models of rock samples, characterize rock geometry models quantitatively, and support accurate numerical simulations of physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Yang, F. Siqueira, A. Vaz, Z. You, and P. Bedrikovetsky, J. Nat. Gas Sci. Eng. 34, 1159 (2016).

    Article  Google Scholar 

  2. N. Saxena, R. Hofmann, F. Alpak, S. Berg, J. Dietderich, U. Agarwal, K. Tandon, S. Hunter, J. Freeman, and O. Wilson, Adv. Water Resour. 109, 211 (2017).

    Article  Google Scholar 

  3. B. Zhao, J. Wang, M. Coop, G. Viggiani, and M. Jiang, Geotechnique 65, 625 (2015).

    Article  Google Scholar 

  4. M. Li, J. Zhang, N. Zhou, and Y. Huang, Rock Mech. 50, 1347 (2017).

    Article  Google Scholar 

  5. Q. Lei, J. Latham, and C. Tsang, Comput. Geotech. 85, 151 (2017).

    Article  Google Scholar 

  6. Z. Luo, W. Wang, Y. Qin, and J. Xiang, Trans. Nonferrous Met. Soc. China 29, 1285 (2019).

    Article  Google Scholar 

  7. J. Minnema, M.V. Eijnatten, W. Kouw, F. Diblen, A. Medrik, and J. Wolff, Comput. Biol. Med. 103, 130 (2018).

    Article  Google Scholar 

  8. C. Arns, M. Knackstedt, and K. Mecke, Phys. Rev. Lett. 91, 215506 (2003).

    Article  Google Scholar 

  9. F. Guillard, B. Marks, and I. Einav, Sci. Rep. 7, 8155 (2017).

    Article  Google Scholar 

  10. J. Baker, F. Guillard, B. Marks, and I. Einav, Nat. Commun. 9, 5119 (2018).

    Article  Google Scholar 

  11. G. Maruyama and T. Hiraga, J. Geophys. Res. Solid Earth 122, 5890 (2017).

    Article  Google Scholar 

  12. R. Hurley and D. Pagan, Int. J. Solids Struct. 168, 26 (2019).

    Article  Google Scholar 

  13. H. Wu, L. Jia, Y. Meng, X. Liu, and J. Lan, Symmetry (Basel) 10, 74112 (2018).

    Google Scholar 

  14. V. Karnaukhov and M. Mozerov, J. Commun. Technol. Electron. 63, 1475 (2018).

    Article  Google Scholar 

  15. P. Jin, C. Bouman, and K. Sauer, IEEE. Trans. Comput. Imaging 1, 200 (2015).

    Article  MathSciNet  Google Scholar 

  16. J. Levi, B. Eck, R. Fahmi, H. Wu, M. Vembar, A. Dhanantwari, A. Fares, H. Bezerra, and D. Wilson, Med. Phys. 46, 1648 (2019).

    Article  Google Scholar 

  17. H. Li and C. Suen, Pattern Recogn. 49, 237 (2016).

    Article  Google Scholar 

  18. N. Guizard, P. Coupé, V. Fonov, J. Manjón, D. Arnold, and D. Collins, Neuroimage Clin. 8, 376 (2015).

    Article  Google Scholar 

  19. C. Cuartas, R. Restrepo, B. Bouma, and N. Uribe, Biomed. Opt. Express 9, 3354 (2018).

    Article  Google Scholar 

  20. J. Shen, P. Chen, L. Su, T. Shi, Z. Tang, and G. Liao, Microelectron. Reliab. 67, 129 (2016).

    Article  Google Scholar 

  21. S. Satapathy, N. Raja, V. Rajinikanth, A. Ashour, and N. Dey, Neural Comput. Appl. 29, 1285 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China during the Thirteenth Five-Year Plan Period (2017YFC0602901) and the Fundamental Research Funds for the Central Universities of Central South University (2017zzts204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouquan Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with other institutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Luo, Z., Dai, Z. et al. Three-Dimensional Structural Imaging of Rock Components and Methods for Component Segmentation and Extraction. JOM 72, 2198–2206 (2020). https://doi.org/10.1007/s11837-020-04133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04133-4

Navigation