Skip to main content
Log in

In Situ Micropillar Compression Tests of 304 Stainless Steels After Ion Irradiation and Helium Implantation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript


A study was conducted to better understand the roles of irradiation defects and cavities on the mechanical properties of 304 stainless steel. Micropillars were fabricated using focused ion beam techniques, and pillars were heat treated at 300°C to serve as a control, irradiated in situ to 5 dpa with 1 MeV krypton ions at 300°C, or pre-implanted with a specific amount of helium and then irradiated. Micropillars were compression tested in situ in a transmission electron microscope (TEM) using a picoindenter. The load–displacement curves were converted into stress–strain curves and mechanical properties were extracted. Irradiation hardening was observed with the yield stress being the highest in the pillar implanted with the least helium. TEM and energy-dispersive spectroscopy analysis showed the presence of irradiation-induced defects in krypton-irradiated samples and the presence of cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. I. Villacampa, J.C. Chen, P. Spatig, H.P. Seifert, and F. Duval, J. Nucl. Mater. 500, 389 (2018).

    Article  Google Scholar 

  2. C. Heintze, F. Bergner, M. Hernandez-Mayoral, R. Kogler, G. Muller, and A. Ulbricht, J. Nucl. Mater. 470, 258 (2016).

    Article  Google Scholar 

  3. J. Weaver, S. Pathak, A. Reichardt, H. Vo, S. Maloy, P. Hosemann, and N. Mara, J. Nucl. Mater. 493, 368 (2017).

    Article  Google Scholar 

  4. Y. Katoh, M. Ando, and A. Kohyama, J. Nucl. Mater. 323, 251 (2003).

    Article  Google Scholar 

  5. J. Henry, M.H. Mathon, and P. Jung, J. Nucl. Mater. 318, 249 (2003).

    Article  Google Scholar 

  6. J. Gao, K. Yabuuchi, and A. Kimura, J. Nucl. Mater. 515, 294 (2019).

    Article  Google Scholar 

  7. M. Roldan, P. Fernandez, J. Rams, D. Jimenez-Rey, E. Materna-Morris, and M. Klimenkov, J. Nucl. Mater. 460, 226 (2015).

    Article  Google Scholar 

  8. F. Bergner, G. Hlawacek, and C. Heintze, J. Nucl. Mater. 505, 267 (2018).

    Article  Google Scholar 

  9. Y. Xin, X. Ju, J. Qiu, L. Guo, J. Chen, Z. Yang, P. Zhang, X. Cao, and B. Wang, Fusion Eng. Des. 87, 432 (2012).

    Article  Google Scholar 

  10. C.D. Judge, V. Bhakhri, Z. Jiao, R.J. Klassen, G. Was, G.A. Botton, M. Griffiths (2017).

  11. A. Reichardt, A. Lupinacci, D. Frazer, N. Bailey, H. Vo, C. Howard, Z. Jiao, A. Minor, P. Chou, and P. Hosemann, J. Nucl. Mater. 486, 323 (2017).

    Article  Google Scholar 

  12. H. Vo, A. Reichardt, D. Frazer, N. Bailey, P. Chou, and P. Hosemann, J. Nucl. Mater. 493, 336 (2017).

    Article  Google Scholar 

  13. K.G. Field, M.N. Gussev, and J.T. Busby, Trans. Am. Nucl. Soc. 110, 1025 (2014).

    Google Scholar 

  14. K. Nakata and I. Masaoka, J. Nucl. Mater. 150, 186 (1987).

    Article  Google Scholar 

  15. C.P. Frick, B.G. Clark, S. Orso, A.S. Schneider, and E. Arzt, Mater. Sci. Eng., A 489, 319 (2008).

    Article  Google Scholar 

  16. X. Zhao, D. Strickland, P. Derlet, M. He, Y. Cheng, K. Hattar, and D. Gianola, Acta Mater. 88, 121 (2015).

    Article  Google Scholar 

  17. F. Zhu, D. Wang, N. Gao, H. Peng, Z. Xie, and Z. Zhang, J. Nucl. Mater. 518, 226 (2019).

    Article  Google Scholar 

  18. P. Landau, Q. Guo, P. Hosemann, Y. Wang, and J. Greer, Mater. Sci. Eng., A 612, 316 (2014).

    Article  Google Scholar 

  19. N. Li, M.S. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, and X. Zhang, J. Appl. Phys. (Melville, NY, USA) 105, 123522 (2009).

    Article  Google Scholar 

  20. J.A. Knapp, D.M. Follstaedt, and S.M. Myers, J. Appl. Phys. (Melville, NY, US) 103, 013518 (2008).

    Article  Google Scholar 

  21. Z. Rak and D.W. Brenner, Appl. Surf. Sci. 402, 108 (2017).

    Article  Google Scholar 

  22. T. Jayakumar, A. Kumar, and B. Raj, AIP Conf. Proc. 975, 1162 (2008).

    Article  Google Scholar 

  23. M. Toloczko, G. Tedeski, G. Lucas, G. Odette, R. Stoller, and M. Hamilton, MRS Online Proc. Libr. 373, 207 (2011).

    Article  Google Scholar 

  24. E. Rabenberg, B. Jaques, B. Sencer, F. Garner, P. Freyer, T. Okita, and D. Butt, J. Nucl. Mater. 448, 315 (2014).

    Article  Google Scholar 

Download references


This work was performed in part at the Analytical Instrumentation Facility (AIF) at North Carolina State University, supported by the State of North Carolina and the National Science Foundation (Award No. ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). The authors also acknowledge funding from NSFDMR Award No. 1807822. This work was partially performed at the National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. The authors thank Pete Baldo, Ed Ryan, Jing Hu, Meimei Li, and Mark Kirk at the IVEM facility for their assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Djamel Kaoumi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoell, R., Frazer, D., Zheng, C. et al. In Situ Micropillar Compression Tests of 304 Stainless Steels After Ion Irradiation and Helium Implantation. JOM 72, 2778–2785 (2020).

Download citation

  • Published:

  • Issue Date:

  • DOI: