Skip to main content

Synergetic Effect of Micro-bamboo Filler and Graphene Nanoplatelets on Thermomechanical Properties of Epoxy-Based Hybrid Composite

Abstract

A hybrid composite material is comprised of two or more substantially different materials whose fusion generates combined features which are different from those of its individual constituents. In this work, a hybrid composite material was developed by varying the weight percentage of chemically treated micro-bamboo filler with a fixed amount of graphene nanoplatelets to eliminate problems associated with fiber alignment, delamination, and anisotropic properties in the thermoset composite. The developed filler-based hybrid composite may be utilized as a thermal interface material and in circuit boards and electronic packaging. The characteristics of the specific grade epoxy matrix were investigated by tensile and flexural testing at different strain rates and by dynamic mechanical analysis conducted over a range of temperature. Thermal conductivity and corrosion analyses were also carried out to address its potential for use in heat transfer application. The results revealed that the hybrid composite material offers better thermomechanical properties than existing bamboo filler composites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    B. Szolnoki, K. Bocz, P.L. Soti, B. Bodzay, E. Zimonyi, A. Toldy, B. Morlin, K. Bujnowicz, M. Wladyka-Przybylak, and G. Marosi, Polym. Degrad. Stabil. 119, 68 (2015).

    Google Scholar 

  2. 2.

    V. Mittal, R. Saini, and S. Sinha, Compos. B Eng. 99, 425 (2016).

    Google Scholar 

  3. 3.

    R.B. Yusoff, H. Takagi, and A.N. Nakagaito, Ind. Crop. Prod. 94, 562 (2016).

    Google Scholar 

  4. 4.

    Y.N. Wang, Y.X. Weng, and L. Wang, Polym. Test. 36, 119 (2014).

    Google Scholar 

  5. 5.

    V. Fiore, G. Di Bella, and A. Valenza, Compos. B Eng. 68, 14 (2015).

    Google Scholar 

  6. 6.

    R. Kumar, S. Bhowmik, and K. Kumar, Int. Polym. Proc. 32, 308 (2017).

    Google Scholar 

  7. 7.

    H. Takagi, S. Kako, K. Kusano, and A. Ousaka, Adv. Compos. Mater. 16, 377 (2007).

    Google Scholar 

  8. 8.

    J.P. Vitale, G. Francucci, and A. Stocchi, J. Sandw. Struct. Mater. 19, 66 (2017).

    Google Scholar 

  9. 9.

    D.U. Shah, M.C. Bock, H. Mulligan, and M.H. Ramage, J. Mater. Sci. 51, 2991 (2016).

    Google Scholar 

  10. 10.

    V. Nagarajan, A.K. Mohanty, and M. Misra, ACS Omega 1, 636 (2016).

    Google Scholar 

  11. 11.

    M. Nciri, D. Notta-Cuvier, F. Lauro, F. Chaari, Y. Maalej, and B. Zouari, Compos. Struct. 160, 516 (2017).

    Google Scholar 

  12. 12.

    J.U. Lee, D. Yoon, and H. Cheong, Nano Lett. 12, 4444 (2012).

    Google Scholar 

  13. 13.

    B.Z. Jang and A. Zhamu, J. Mater. Sci. 43, 5092 (2008).

    Google Scholar 

  14. 14.

    Y.T. Park, Y. Qian, C. Chan, T. Suh, M.G. Nejhad, C.W. Macosko, and A. Stein, Adv. Funct. Mater. 25, 575 (2015).

    Google Scholar 

  15. 15.

    L. Yue, G. Pircheraghi, S.A. Monemian, and I. Manas-Zloczower, Carbon 78, 268 (2014).

    Google Scholar 

  16. 16.

    A. Rybak, L. Jarosinski, K. Gaska, and C. Kapusta, Polym. Compos. 39, E1682 (2018).

    Google Scholar 

  17. 17.

    E. Pop, V. Varshney, and A.K. Roy, MRS Bull. 37, 1273 (2012).

    Google Scholar 

  18. 18.

    A.A. Balandin, Nat. Mater. 10, 569 (2011).

    Google Scholar 

  19. 19.

    F. Inam, Epoxy 1, 1 (2014).

    Google Scholar 

  20. 20.

    J. Wei, T. Vo, and F. Inam, RSC Adv. 5, 73510 (2015).

    Google Scholar 

  21. 21.

    D. Pathania and D. Singh, IJTAS 1, 34 (2009).

    Google Scholar 

  22. 22.

    F.M. Al-Oqla, S.M. Sapuan, T. Anwer, M. Jawaid, and M.E. Hoque, Synth. Met. 206, 42 (2015).

    Google Scholar 

  23. 23.

    A.K. Bledzki, H.P. Fink, and K. Specht, J. Appl. Polym. Sci. 93, 2150 (2015).

    Google Scholar 

  24. 24.

    Y. Liu and H. Hu, Fiber Polym. 9, 735 (2008).

    Google Scholar 

  25. 25.

    L. Segal, J.J. Creely, A.E. Martin Jr., and C.M. Conrad, Text. Res. J. 29, 786 (1995).

    Google Scholar 

  26. 26.

    H. Ren, E. Cunha, Q. Sun, Z. Li, I.A. Kinloch, R.J. Young, and Z. Fan, Nanoscale Adv. 1, 1432 (2019).

    Google Scholar 

  27. 27.

    G.J. Lee and C.K. Rhee, J. Mater. Sci. 49, 1506 (2014).

    Google Scholar 

  28. 28.

    X.X. Zhou, Y. Yu, and L.H. Chen, Eur. J. Wood Wood Prod. 73, 199 (2015).

    Google Scholar 

  29. 29.

    H. Liu, Q. Wu, G. Han, F. Yao, Y. Kojima, and S. Suzuki, Compos. Part A Appl. Sci. Manuf. 39, 1891 (2018).

    Google Scholar 

  30. 30.

    F. Wang and X. Cai, J. Mater. Sci. 54, 3847 (2019).

    Google Scholar 

  31. 31.

    A.A. Moosa, A.R. Sa, and M.N. Ibrahim, Am. J. Mater. Sci. 6, 157 (2016).

    Google Scholar 

  32. 32.

    R. Kumar, K. Kumar, and S. Bhowmik, J. Polym. Environ. 26, 2522 (2018).

    Google Scholar 

  33. 33.

    N.M. Abdullah and I. Ahmad, Fiber. Polym. 14, 584 (2013).

    Google Scholar 

  34. 34.

    E. Pérez, L. Famá, S.G. Pardo, M.J. Abad, and C. Bernal, Compos. Part B: Eng. 43, 2795 (2012).

    Google Scholar 

  35. 35.

    A. Kumar, K. Sharma, and A.R. Dixit, J. Mater. Sci. 54, 5992 (2019).

    Google Scholar 

  36. 36.

    S.G. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, and A. Ureña, Eur. Polym. J. 61, 206 (2014).

    Google Scholar 

  37. 37.

    Y. Dong, A. Ghataura, H. Takagi, H.J. Haroosh, A.N. Nakagaito, and K.T. Lau, Compos. Part A Appl. Sci. Manuf. 63, 76 (2014).

    Google Scholar 

  38. 38.

    M. Sudheer, R. Prabhu, K. Raju, and T. Bhat, Adv. Mater. Sci. Eng. 2014, 1 (2014).

    Google Scholar 

  39. 39.

    S.M. Mirmehdi, F. Zeinaly, and F. Dabbagh, Compos. B Eng. 56, 137 (2014).

    Google Scholar 

  40. 40.

    R. Kumar, K. Kumar, and S. Bhowmik, Wood Sci. Technol. 52, 677 (2018).

    Google Scholar 

  41. 41.

    N. Saba, M. Jawaid, O.Y. Alothman, and M.T. Paridah, Constr. Build. Mater. 106, 149 (2016).

    Google Scholar 

  42. 42.

    Y. Agari and T. Uno, J. Appl. Polym. Sci. 30, 2225 (1985).

    Google Scholar 

  43. 43.

    F.Z. Wang, L.T. Drzal, Y. Qin, and Z.X. Huang, J. Mater. Sci. 50, 1082 (2015).

    Google Scholar 

  44. 44.

    H.Y. Yan, Y.X. Tang, W. Long, and Y.F. Li, J. Mater. Sci. 49, 5256 (2014).

    Google Scholar 

  45. 45.

    S.Y. Arman, B. Ramezanzadeh, S. Farghadani, M. Mehdipour, and A. Rajabi, Corros. Sci. 77, 118 (2013).

    Google Scholar 

  46. 46.

    M. Gharagozlou, B. Ramezanzadeh, and Z. Baradaran, Appl. Surf. Sci. 377, 86 (2016).

    Google Scholar 

  47. 47.

    A.K. Shanker, C. Cervantes, H. Loza-Tavera, and S. Avudainayagam, Environ. Int. 31, 739 (2005).

    Google Scholar 

  48. 48.

    X. Wang, J. Jin, and M. Song, Carbon 65, 324 (2013).

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the Central Power Research Institute (CPRI), India and the Department of Science and Technology (DST) fund for improvement of S&T infrastructure (FIST), for providing financial and technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouda, K., Bhowmik, S. & Das, B. Synergetic Effect of Micro-bamboo Filler and Graphene Nanoplatelets on Thermomechanical Properties of Epoxy-Based Hybrid Composite. JOM 72, 4466–4476 (2020). https://doi.org/10.1007/s11837-020-04125-4

Download citation