Skip to main content
Log in

Measurement and Simulation of Vacancy Formation in 2-MeV Self-irradiated Pure Fe

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Positron annihilation spectroscopy is a powerful tool to quantify the amount of vacancies and vacancy clusters in materials. The technique has been utilized to study the induced defects in materials after ion beam and neutron irradiations. This paper makes the case for how the technique can and should be utilized to quantify the defects created by irradiation in situ during irradiation to foster a more thorough understanding of the surviving defects after initial collision cascades. This paper outlines a future experimental approach and its meaning for the nuclear materials community, being able to benchmark commonly used rate theory models of damage evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Kerl, J. Wolff, and T. Hehenkamp, Intermetallics 7, 301 (1999).

    Google Scholar 

  2. C. Dimitrov, M. Tenti, and O. Dimitrov, J. Phys. F Met. Phys. 11, 753 (1981).

    Google Scholar 

  3. A. Persaud, J.J. Barnard, H. Guo, P. Hosemann, S. Lidia, A.M. Minor, P.A. Seidl, and T. Schenkel, Phys. Procedia 66, 604 (2015).

    Google Scholar 

  4. H. Wiedersich, Radiat. Eff. 12, 111 (1972).

    Google Scholar 

  5. B.D. Wirth, M.J. Caturla, T. DíazDeLaRubia, T. Khraishi, and H. Zbib, Nucl. Instrum. Methods Phys. Res. Sect. B 180, 23 (2001).

    Google Scholar 

  6. J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis, Philos. Mag. 83, 955 (2003).

    Google Scholar 

  7. B.D. Wirth, X. Hu, A. Kohnert, and D.J. Xu, J. Mater. Res. 30, 1440 (2015).

    Google Scholar 

  8. E. Roger, Stoller, Primary Radiation Damage Formation, 1st ed. (Amsterdam: Elsevier, 2019), pp. 293–332.

    Google Scholar 

  9. C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, and L. Wang, Sci. Rep. 6, 19994 (2016).

    Google Scholar 

  10. X. Yi, M.L. Jenkins, K. Hattar, P.D. Edmondson, and S.G. Roberts, Acta Mater. 92, 163 (2015).

    Google Scholar 

  11. C. Liu, L. He, Y. Zhai, B. Tyburska-Püschel, P.M. Voyles, K. Sridharan, D. Morgan, and I. Szlufarska, Acta Mater. 125, 377 (2017).

    Google Scholar 

  12. Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, and M. Hasegawa, Phys. Rev. B 67, 224202 (2003).

    Google Scholar 

  13. T. Onitsuka, M. Takenaka, E. Kuramoto, Y. Nagai, and M. Hasegawa, Phys. Rev. B 65, 012204 (2001).

    Google Scholar 

  14. Y. Nagai, Z. Tang, M. Hassegawa, T. Kanai, and M. Saneyasu, Phys. Rev. B 63, 134110 (2001).

    Google Scholar 

  15. J. Čížek, F. Lukáč, I. Procházka, R. Kužel, Y. Jirásková, D. Janičkovič, W. Anwand, and G. Brauer, Phys. B (Amsterdam, Neth.) 407, 2659 (2012).

    Google Scholar 

  16. A. Vehanen, P. Hautojarvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Phys. Rev. B 25, 762 (1982).

    Google Scholar 

  17. V. Krsjak, J. Kuriplach, T. Shen, V. Sabelova, K. Sato, and Y. Dai, J. Nucl. Mater. 456, 382 (2015).

    Google Scholar 

  18. J. Jiang, Y.C. Wu, X.B. Liu, R.S. Wang, Y. Nagai, K. Inoue, Y. Shimizu, and T. Toyama, J. Nucl. Mater. 458, 326 (2015).

    Google Scholar 

  19. X. Liu, R. Wang, A. Ren, P. Huang, Y. Wu, J. Jiang, C. Zhang, and X. Wang, Radiat. Phys. Chem. 81, 1586 (2012).

    Google Scholar 

  20. J. Čížek, I. Procházka, and J. Kocik, Defect Diffus. Forum 273, 81 (2008).

    Google Scholar 

  21. P. Hautojärvi, Positrons in Solids, 1st ed. (Berlin: Springer, 1979), pp. 491–522.

    Google Scholar 

  22. P. Kirkegaard, J. Olsen, and M. Eldrup, PALSfit3: A Software Package for Analyzing Positron Lifetime Spectra (Lyngby: Technical University of Denmark, 2017).

    Google Scholar 

  23. A. van Veen, H. Schut, J. de Vries, R.A. Hakvoort, and M.R. Ijpma, AIP Conf. Proc. 218–1, 171 (1991).

    Google Scholar 

  24. C.D. Hardie, C.A. Williams, S. Xu, and S.G. Roberts, J. Nucl. Mater. 439, 33 (2013).

    Google Scholar 

  25. M.O. Liedke, W. Anwand, R. Bali, S. Cornelius, M. Butterling, T.T. Trinh, A. Wagner, S. Salamon, D. Walecki, A. Smekhova, H. Wende, and K. Potzger, J. Appl. Phys. (Melville, NY, USA) 117, 163908 (2015).

    Google Scholar 

  26. A. Wagner, M. Butterling, M.O. Liedke, K. Potzger, and R. Krause-Rehberg, AIP Conf. Proc. 1, 040003 (2018).

    Google Scholar 

  27. A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, B.E. O’Rourke, and T. Nishijima, Phys. Procedia 35, 111 (2012).

    Google Scholar 

  28. A. Kinomura, R. Suzuki, T. Ohdaira, N. Oshima, B.E. O’Rourke, and T. Nishijima, J. Phys. Conf. Ser. 443, 012043 (2013).

    Google Scholar 

  29. MATLAB. Version 9.4.0 R (2018a). Natick, MA: The MathWorks Inc., (2018).

  30. J.F. Ziegler and J.P. Biersack. SRIM-2008, Stopping power and range of ions in matter (2008).

  31. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013).

    Google Scholar 

  32. ASTM Standards, ASTM International, PA, E706(ID), ASTM E693-12 (2012).

  33. A. Seeger, Appl. Surf. Sci. 85, 8 (1995).

    Google Scholar 

  34. J. Shi, W.Z. Zhao, Y.C. Wu, X.B. Liu, and J. Jiang, Nucl. Instrum. Methods Phys. Res. Sect. B 443, 62 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported as part of FUTURE (Fundamental Understanding of Transport under Reactor Extremes), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Auguste.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auguste, R., Liedke, M.O., Selim, F.A. et al. Measurement and Simulation of Vacancy Formation in 2-MeV Self-irradiated Pure Fe. JOM 72, 2436–2444 (2020). https://doi.org/10.1007/s11837-020-04116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04116-5

Navigation