Skip to main content

Advertisement

Log in

Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents

  • Biodegradable Materials for Medical Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium-based alloys have insufficient mechanical properties to make stents as thin as permanent ones.. Twinning-induced plasticity steels, made of Fe, Mn, and C, show significant potential in terms of mechanical properties, but their corrosion rate is too slow. Addition of silver shows promise in this sense; However, the corrosion mechanism promoted by addition of Ag remains unclear. Moreover, the effect of plastic deformation on the corrosion mechanism is still unknown for this system. The effect of silver on the degradation behavior of a deformed twinning-induced plasticity steel has been studied. It was observed that Ag did not accelerate the corrosion rate. On the other hand, its addition promoted more uniform degradation, thus indicating the potential of twinning-induced plasticity steels for application in very thin biodegradable stents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R Rep. 77, 1 (2014).

    Article  Google Scholar 

  2. H.M. Garcia-Garcia, M. Haude, K. Kuku, A. Hideo-Kajita, H. Ince, A. Abizaid, R. Tölg, P.A. Lemos, C. von Birgelen, E.H. Christiansen, W. Wijns, J. Escaned, J. Dijkstra, and R. Waksman, Int. J. Cardiol. 255, 22 (2018).

    Article  Google Scholar 

  3. M. Haude, H. Ince, A. Abizaid, R. Toelg, P.A. Lemos, C. von Birgelen, E.H. Christiansen, W. Wijns, F.-J. Neumann, C. Kaiser, E. Eeckhout, S.T. Lim, J. Escaned, H.M. Garcia-Garcia, and R. Waksman, Lancet 387, 31 (2016).

    Article  Google Scholar 

  4. M. Haude, R. Erbel, P. Erne, S. Verheye, H. Degen, P. Vermeersch, N. Weissman, F. Prati, N. Bruining, R. Waksman, and J. Koolen, EuroIntervention 12, 160 (2016).

    Article  Google Scholar 

  5. S. Verheye, A. Wlodarczak, P. Montorsi, J. Bennett, J. Torzewski, M. Haude, M. Vrolix, T. Buck, A. Aminian, R.J. Van Der Schaaf, A. Nuruddin, and M. Lee, EuroIntervention 15, e1383 (2019).

    Article  Google Scholar 

  6. M. Haude, H. Ince, A. Abizaid, R. Toelg, P.A. Lemos, C. von Birgelen, E.H. Christiansen, W. Wijns, F.-J. Neumann, C. Kaiser, E. Eeckhout, S.T. Lim, J. Escaned, Y. Onuma, H.M. Garcia-Garcia, and R. Waksman, Eur. Heart J. 14, 24492 (2016).

    Google Scholar 

  7. N. Foin, R.D. Lee, R. Torii, J.L. Guitierrez-Chico, A. Mattesini, S. Nijjer, S. Sen, R. Petraco, J.E. Davies, C. Di Mario, M. Joner, R. Virmani, and P. Wong, Int. J. Cardiol. 177, 800 (2014).

    Article  Google Scholar 

  8. H.-S. Han, S. Loffredo, I. Jun, J. Edwards, Y.-C. Kim, H.-K. Seok, F. Witte, D. Mantovani, and S. Glyn-Jones, Mater. Today 23, 57 (2019).

    Article  Google Scholar 

  9. M. Schinhammer, C.M. Pecnik, F. Rechberger, A.C. Hänzi, J.F. Löffler, and P.J. Uggowitzer, Acta Mater. 60, 2746 (2012).

    Article  Google Scholar 

  10. M. Schinhammer, I. Gerber, A.C. Hänzi, and P.J. Uggowitzer, Mater. Sci. Eng. C 33, 782 (2013).

    Article  Google Scholar 

  11. C. Verhaegen, S. Lepropre, M. Octave, D. Brusa, L. Bertrand, C. Beauloye, P.J. Jacques, J. Kefer, and S. Horman, J. Biomater. Nanobiotechnol. 10, 175 (2019).

    Article  Google Scholar 

  12. T. Kraus, F. Moszner, S. Fischerauer, M. Fiedler, E. Martinelli, J. Eichler, F. Witte, E. Willbold, M. Schinhammer, M. Meischel, P.J. Uggowitzer, J.F. Löffler, and A. Weinberg, Acta Biomater. 10, 3346 (2014).

    Article  Google Scholar 

  13. Y.S. Zhang and X.M. Zhu, Corros. Sci. 41, 1817 (1999).

    Article  Google Scholar 

  14. R. Tolouei, J. Harrison, C. Paternoster, S. Turgeon, P. Chevallier, and D. Mantovani, Phys. Chem. Chem. Phys. 18, 19637 (2016).

    Article  Google Scholar 

  15. F.J. Schoen and R.N. Mitchell, Biomaterials Science: An Introduction to Materials, 3rd ed., ed. B.D. Ratner, A.S. Hoffman, F.J. Schoen, and J.E. Lemons (Amsterdam: Elsevier, 2013), pp. 452–474.

    Chapter  Google Scholar 

  16. E. Mouzou, C. Paternoster, R. Tolouei, P. Chevallier, C.A. Biffi, A. Tuissi, and D. Mantovani, Mater. Lett. 181, 362 (2016).

    Article  Google Scholar 

  17. M. Schinhammer, P. Steiger, F. Moszner, J.F. Loffler, and P.J. Uggowitzer, Mater. Sci. Eng. C 33, 1882 (2013).

    Article  Google Scholar 

  18. Z. Ma, M. Gao, D. Na, Y. Li, L. Tan, and K. Yang, Mater. Sci. Eng. C 103, 109718 (2019).

    Article  Google Scholar 

  19. J.R. Rumble, eds., CRC Handbook of Chemistry and Physics, 100th ed. (Boca Raton: CRC Press/Taylor & Francis, 2019), pp. 5-97–5-103.

    Google Scholar 

  20. L.J. Swartzendruber, Bull. Alloys Phase Diagr. 5, 560 (1984).

    Article  Google Scholar 

  21. I. Karakaya and W.T. Thompson, Bull. Alloys Phase Diagr. 11, 480 (1990).

    Article  Google Scholar 

  22. T. Huang, Y. Cheng, and Y. Zheng, Colloids Surf. B Biointerfaces 142, 20 (2016).

    Article  Google Scholar 

  23. P. Sotoudeh Bagha, M. Khakbiz, S. Sheibani, and H. Hermawan, J. Alloys Compd. 767, 955 (2018).

    Article  Google Scholar 

  24. M. Wiesener, K. Peters, A. Taube, A. Keller, K.P. Hoyer, T. Niendorf, and G. Grundmeier, Mater. Corros. 68, 1028 (2017).

    Article  Google Scholar 

  25. M. Heiden, A. Kustas, K. Chaput, E. Nauman, D. Johnson, and L. Stanciu, J. Biomed. Mater. Res. A 103, 738 (2015).

    Article  Google Scholar 

  26. S. Loffredo, C. Paternoster, N. Giguère, G. Barucca, M. Vedani, and D. Mantovani, Acta Biomater. 98, 103 (2019).

    Article  Google Scholar 

  27. ASTM, ASTM Int. G31-12a, 1 (2012).

    Google Scholar 

  28. A.C. Hänzi, I. Gerber, M. Schinhammer, J.F. Löffler, and P.J. Uggowitzer, Acta Biomater. 6, 1824 (2010).

    Article  Google Scholar 

  29. P. Sotoudehbagha, S. Sheibani, M. Khakbiz, S. Ebrahimi-Barough, and H. Hermawan, Mater. Sci. Eng. C 88, 88 (2018).

    Article  Google Scholar 

  30. M. Caligari Conti, B. Mallia, E. Sinagra, P. Schembri Wismayer, J. Buhagiar, and D. Vella, Heliyon 5, e02522 (2019).

    Article  Google Scholar 

  31. E. Mouzou, C. Paternoster, R. Tolouei, A. Purnama, P. Chevallier, D. Dubé, F. Prima, and D. Mantovani, Mater. Sci. Eng. C 61, 564 (2016).

    Article  Google Scholar 

  32. H. Hermawan, A. Purnama, D. Dube, J. Couet, and D. Mantovani, Acta Biomater. 6, 1852 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Leticia Marin de Andrade from Laval University and Ruben Beltrami from Politecnico di Milano for professional support with the interpretation of the electrochemical results, together with Vicky Dodier from Laval University for invaluable assistance with MP-AES analyses. This work was funded by the Natural Science and Engineering Research Council of Canada under the CU-I2I and Discovery program. Financial support and technical collaboration from AMEC Usinage, Plasmionique Inc., Umano Medical Inc. and Metalliage Inc. is also acknowledged and much appreciated. S.L. acknowledges funding from a Vanier Canada Graduate Scholarship. D.M. was supported by NSERC-Canada and holds a Canada Research Chair Tier I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mantovani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loffredo, S., Paternoster, C., Giguère, N. et al. Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents. JOM 72, 1892–1901 (2020). https://doi.org/10.1007/s11837-020-04111-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04111-w

Navigation