Skip to main content

Influence of Optical Thickness on the Melting of a Phase Change Material in a Thermal Energy Storage Module

Abstract

Thermal energy storage using phase change material (PCM) is needed for renewable power generation using solar energy. In the present investigation, the discrete-ordinate method is used to numerically investigate the radiative transport in a two-dimensional finned cylinder containing an absorbing-emitting PCM. The enthalpy-porosity method is used to track the melting-solidification interface. This study investigated the effects of the optical thickness of the phase change material and the temperature at the outer surface of the finned cylinder on the melting process. The results obtained show that thermal radiation decreases the melting time and accelerates the phase transition process. Besides, the results showed that the use of fins along with a radiation absorber in the PCM decreases the melting time by 65% compared with only fins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

c p :

Specific heat at constant pressure (J/kg K)

g :

Gravitational acceleration (m/s2)

h :

Sensible enthalpy (J/kg)

P :

Pressure

q t :

Total heat transfer rate at the inner shell wall (W)

q r :

Radiation heat transfer rate (W)

r :

Radial coordinate (m)

Ste:

Stefan number, Ste = cp(TwTm)/λ

t :

Time (s)

T :

Temperature (K)

v :

Velocity (m/s)

α :

Thermal diffusivity (m2/s)

β :

Thermal expansion coefficient (1/K)

θ :

Angular coordinate

κ a :

Absorption coefficient (m−1)

λ :

Latent heat (J/kg)

µ :

Dynamic viscosity (kg/m s)

ρ :

Density (kg/m3)

σ s :

Scattering coefficient (m−1)

τ :

Optical thickness, τ = (κa + σs)R

in:

Initial

m:

Melting

r:

Radial direction

w:

Wall

θ :

Angular direction

References

  1. A. Mosaffa, F. Talati, H.B. Tabrizi, and M. Rosen, Energy Build. 49, 356 (2012).

    Article  Google Scholar 

  2. A.M. Abdulateef, S. Mata, J. Abdulateef, K. Sopiana, and A.A. Al-Abid, Renew. Sustain. Energy Rev. 82, 1620 (2018).

    Article  Google Scholar 

  3. H. Shabgard, C.W. Robak, T.L. Bergman, and A. Faghri, Sol. Energy 86, 816 (2012).

    Article  Google Scholar 

  4. S. Lohrasbi, S.Z. Miry, M. Gorji-Bandpy, and D.D. Ganji, Int. J. Hydrog. Energy 42, 6526 (2017).

    Article  Google Scholar 

  5. S. Wu, H. Wang, S. Xiao, and D. Zhu, J. Therm. Anal. Calorim. 110, 1127 (2011).

    Article  Google Scholar 

  6. A.R. Archibold, A. Bhardwaj, M.M. Rahman, D.Y. Goswami, and E.K. Stefanakos, Appl. Energy 138, 675 (2015).

    Article  Google Scholar 

  7. S. Bellan, J. Gonzalez-Aguilar, M. Romero, M.M. Rahman, Y.D. Goswami, E.K. Stefanakos, and D. Couling, Appl. Therm. Eng. 71, 481 (2014).

    Article  Google Scholar 

  8. M.F. Modest, Radiative Heat Transfer, 3rd ed. (San Diego: Elsevier Science, 2013), pp. 1–2.

    Book  Google Scholar 

  9. C.Y. Han and S.W. Baek, Int. J. Comput. Methods 36, 473 (1999).

    Google Scholar 

  10. S.C. Mishra, C.H. Krishna, and M.Y. Kim, Int. J. Comput. Methods 60, 254 (2011).

    Google Scholar 

  11. M.Y. Kim and S.W. Baek, J. Quant. Spectrosc. Radiat. Transf. 90, 377 (2005).

    Article  Google Scholar 

  12. P. Mahanta and S.C. Mishra, J. Inst. Eng. 84, 2 (2004).

    Google Scholar 

  13. S.C. Mishra, A. Stephen, and M.Y. Kim, Int. J Comput. Methods 58, 943 (2010).

    Google Scholar 

  14. B. Hunter and Z. Guo, Numer. Heat Transf. Part B 59, 339 (2011).

    Article  Google Scholar 

  15. A.S.M. Rao, K. Narender, K.G.K. Rao, and N.G. Krishna, J. Mod. Physics 4, 208 (2013).

    Article  Google Scholar 

  16. R.L. Panton, Incompressible Flow (Hoboken: Wiley – Interscience, 1984), pp. 742–751.

    MATH  Google Scholar 

  17. M.P. Menguc and R. Viskanta, J. Heat Transf. 108, 271 (1986).

    Article  Google Scholar 

  18. A.S. Jamaluddin and P.J. Smith, Combust. Sci. Technol. 62, 173 (1988).

    Article  Google Scholar 

  19. B.J. Jones, D. Sun, S. Krishnan, and S.V. Garimella, Int. J. Heat Mass Transf. 49, 2724 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mustafizur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belaed, M., Rahman, M.M. & Guldiken, R. Influence of Optical Thickness on the Melting of a Phase Change Material in a Thermal Energy Storage Module. JOM 72, 2089–2095 (2020). https://doi.org/10.1007/s11837-020-04099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04099-3