Skip to main content

Tailoring the Mechanical and Degradation Performance of Mg-2.0Zn-0.5Ca-0.4Mn Alloy Through Microstructure Design

Abstract

A novel Mg-2.0Zn-0.5Ca-0.4Mn alloy has been formulated and processed through melt spinning and hot extrusion to enhance its mechanical and degradation properties. Microstructural characterization of rapidly solidified alloy ribbons consolidated by extrusion revealed a fine and fully recrystallized microstructure with average size of 4 µm. The conventionally extruded alloy consisted of several course second-phase strips as coarse as 100 µm, while the extrusion-consolidated ribbons were devoid of any second phases larger than 100 nm. Rapid solidification followed by extrusion processing resulted in significantly randomized texture where the majority of the basal planes were tilted toward transverse and extrusion directions. Such a weak texture resulted in higher activity of basal planes and thereby considerably improved the fracture elongation from 4% to 19%, while retaining relatively high tensile strength of 294 MPa. In addition to high strength and ductility due to the reduced activity of deformation twining during compression, the extrusion-consolidated alloy ribbons showed lower yielding asymmetric ratio than that measured for the conventionally extruded alloy (1.25 versus 1.61). Electrochemical measurements and immersion tests indicated that application of rapid solidification followed by extrusion remarkably reduced the corrosion rate from 2.49 mm/year to 0.37 mm/year due to recrystallization completion and suppression of coarse second-phase formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R Rep. 77, 1 (2014).

    Article  Google Scholar 

  2. X. Zhang, G. Yuan, J. Niu, P. Fu, and W. Ding, J. Mech. Behav. Biomed. Mater. 9, 153 (2012).

    Article  Google Scholar 

  3. G. Song, Corros. Sci. 49, 1696 (2007).

    Article  Google Scholar 

  4. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biomed. Eng. Online 12, 62 (2013).

    Article  Google Scholar 

  5. C. Plaass, C. von Falck, S. Ettinger, L. Sonnow, F. Calderone, A. Weizbauer, J. Reifenrath, L. Claassen, H. Waizy, K. Daniilidis, C. Stukenborg-Colsman, and H. Windhagen, J. Orthop. Sci. 23, 321 (2018).

    Article  Google Scholar 

  6. G. Pagano, M. Guida, F. Tommasi, and R. Oral, Ecotoxicol. Environ. Saf. 115, 40 (2015).

    Article  Google Scholar 

  7. J. Ma, N. Zhao, D. Zhu, and A.C.S. Biomater, Sci. Eng. 1, 1174 (2015).

    Google Scholar 

  8. Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomaterials 29, 1329 (2008).

    Article  Google Scholar 

  9. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Acta Biomater. 6, 626 (2010).

    Article  Google Scholar 

  10. H. Somekawa and T. Mukai, Mater. Sci. Eng. A 459, 366 (2007).

    Article  Google Scholar 

  11. S.W. Xu, K. Oh-ishi, H. Sunohara, and S. Kamado, Mater. Sci. Eng. A 558, 356 (2012).

    Article  Google Scholar 

  12. T.V. Larionova, W.W. Park, and B.S. You, Scr. Mater. 45, 7 (2001).

    Article  Google Scholar 

  13. D. Zander and N.A. Zumdick, Corros. Sci. 93, 222 (2015).

    Article  Google Scholar 

  14. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).

    Article  Google Scholar 

  15. G. Qiang, E. Mostaed, C. Zanella, Y. Zhentao, and M. Vedani, Rare Met. Mater. Eng. 43, 2561 (2014).

    Article  Google Scholar 

  16. E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, and M. Vedani, J. Mech. Behav. Biomed. Mater. 37, 307 (2014).

    Article  Google Scholar 

  17. ASTM E8-04, 2004, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards.

  18. ASTM E9-09, Annual book of ASTM standards (2009).

  19. M.M. Avedesian and H. Baker, ASM International (1999).

  20. Y. Xin, T. Hu, and P.K. Chu, Acta Biomater. 7, 1452 (2011).

    Article  Google Scholar 

  21. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).

    Article  Google Scholar 

  22. G. Levi, S. Avraham, A. Zilberov, and M. Bamberger, Acta Mater. 54, 523 (2006).

    Article  Google Scholar 

  23. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).

    Article  Google Scholar 

  24. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, Mater. Charact. 107, 70 (2015).

    Article  Google Scholar 

  25. R.E. Reed-Hill and W.D. Robertson, Acta Metall. 5, 728 (1957).

    Article  Google Scholar 

  26. X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, and Q.-C. Jiang, Scr. Mater. 67, 443 (2012).

    Article  Google Scholar 

  27. E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, J. Alloys Compd. 638, 267 (2015).

    Article  Google Scholar 

  28. S. Kleiner and P.J. Uggowitzer, Mater. Sci. Eng. A 379, 258 (2004).

    Article  Google Scholar 

  29. M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).

    Article  Google Scholar 

  30. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, J. Alloys Compd. 673, 327 (2016).

    Article  Google Scholar 

  31. R. Rettig and S. Virtanen, J. Biomed. Mater. Res. A 85, 167 (2008).

    Article  Google Scholar 

  32. N. Pebere, C. Riera, and F. Dabosi, Electrochim. Acta 35, 555 (1990).

    Article  Google Scholar 

  33. M. Ascencio, M. Pekguleryuz, and S. Omanovic, Corros. Sci. 87, 489 (2014).

    Article  Google Scholar 

  34. S.A. Abdel-Gawad and M.A. Shoeib, Surf. Interfaces 14, 108 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The US National Institute of Health – National Heart, Lung, and Blood Institute, Grant 1R01HL144739-01A1, and Michigan Tech College of Engineering, through Cross-Cutting Initiative funding, are acknowledged for funding this work. The authors also acknowledge the Engineering and Physical Sciences Research Council (EPSRC) grant EP/N032233/1 and the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1 for JEOL JEM-F200 access at Royce@Sheffield. The authors also acknowledge the Applied Chemical and Morphological Analysis Laboratory (ACMAL) at Michigan Tech for use of instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mostaed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostaed, E., Sikora-Jasinska, M., Wang, L. et al. Tailoring the Mechanical and Degradation Performance of Mg-2.0Zn-0.5Ca-0.4Mn Alloy Through Microstructure Design. JOM 72, 1880–1891 (2020). https://doi.org/10.1007/s11837-020-04085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04085-9