Abstract
A novel Mg-2.0Zn-0.5Ca-0.4Mn alloy has been formulated and processed through melt spinning and hot extrusion to enhance its mechanical and degradation properties. Microstructural characterization of rapidly solidified alloy ribbons consolidated by extrusion revealed a fine and fully recrystallized microstructure with average size of 4 µm. The conventionally extruded alloy consisted of several course second-phase strips as coarse as 100 µm, while the extrusion-consolidated ribbons were devoid of any second phases larger than 100 nm. Rapid solidification followed by extrusion processing resulted in significantly randomized texture where the majority of the basal planes were tilted toward transverse and extrusion directions. Such a weak texture resulted in higher activity of basal planes and thereby considerably improved the fracture elongation from 4% to 19%, while retaining relatively high tensile strength of 294 MPa. In addition to high strength and ductility due to the reduced activity of deformation twining during compression, the extrusion-consolidated alloy ribbons showed lower yielding asymmetric ratio than that measured for the conventionally extruded alloy (1.25 versus 1.61). Electrochemical measurements and immersion tests indicated that application of rapid solidification followed by extrusion remarkably reduced the corrosion rate from 2.49 mm/year to 0.37 mm/year due to recrystallization completion and suppression of coarse second-phase formation.
This is a preview of subscription content, access via your institution.









References
Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R Rep. 77, 1 (2014).
X. Zhang, G. Yuan, J. Niu, P. Fu, and W. Ding, J. Mech. Behav. Biomed. Mater. 9, 153 (2012).
G. Song, Corros. Sci. 49, 1696 (2007).
H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, Biomed. Eng. Online 12, 62 (2013).
C. Plaass, C. von Falck, S. Ettinger, L. Sonnow, F. Calderone, A. Weizbauer, J. Reifenrath, L. Claassen, H. Waizy, K. Daniilidis, C. Stukenborg-Colsman, and H. Windhagen, J. Orthop. Sci. 23, 321 (2018).
G. Pagano, M. Guida, F. Tommasi, and R. Oral, Ecotoxicol. Environ. Saf. 115, 40 (2015).
J. Ma, N. Zhao, D. Zhu, and A.C.S. Biomater, Sci. Eng. 1, 1174 (2015).
Z. Li, X. Gu, S. Lou, and Y. Zheng, Biomaterials 29, 1329 (2008).
S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, and Y. Jiang, Acta Biomater. 6, 626 (2010).
H. Somekawa and T. Mukai, Mater. Sci. Eng. A 459, 366 (2007).
S.W. Xu, K. Oh-ishi, H. Sunohara, and S. Kamado, Mater. Sci. Eng. A 558, 356 (2012).
T.V. Larionova, W.W. Park, and B.S. You, Scr. Mater. 45, 7 (2001).
D. Zander and N.A. Zumdick, Corros. Sci. 93, 222 (2015).
M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).
G. Qiang, E. Mostaed, C. Zanella, Y. Zhentao, and M. Vedani, Rare Met. Mater. Eng. 43, 2561 (2014).
E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, and M. Vedani, J. Mech. Behav. Biomed. Mater. 37, 307 (2014).
ASTM E8-04, 2004, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards.
ASTM E9-09, Annual book of ASTM standards (2009).
M.M. Avedesian and H. Baker, ASM International (1999).
Y. Xin, T. Hu, and P.K. Chu, Acta Biomater. 7, 1452 (2011).
Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie, Acta Mater. 105, 479 (2016).
G. Levi, S. Avraham, A. Zilberov, and M. Bamberger, Acta Mater. 54, 523 (2006).
J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).
E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, Mater. Charact. 107, 70 (2015).
R.E. Reed-Hill and W.D. Robertson, Acta Metall. 5, 728 (1957).
X.-L. Nan, H.-Y. Wang, L. Zhang, J.-B. Li, and Q.-C. Jiang, Scr. Mater. 67, 443 (2012).
E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, and M. Vedani, J. Alloys Compd. 638, 267 (2015).
S. Kleiner and P.J. Uggowitzer, Mater. Sci. Eng. A 379, 258 (2004).
M.A. Meyers, O. Vohringer, and V.A. Lubarda, Acta Mater. 49, 4025 (2001).
F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod, J. Alloys Compd. 673, 327 (2016).
R. Rettig and S. Virtanen, J. Biomed. Mater. Res. A 85, 167 (2008).
N. Pebere, C. Riera, and F. Dabosi, Electrochim. Acta 35, 555 (1990).
M. Ascencio, M. Pekguleryuz, and S. Omanovic, Corros. Sci. 87, 489 (2014).
S.A. Abdel-Gawad and M.A. Shoeib, Surf. Interfaces 14, 108 (2019).
Acknowledgements
The US National Institute of Health – National Heart, Lung, and Blood Institute, Grant 1R01HL144739-01A1, and Michigan Tech College of Engineering, through Cross-Cutting Initiative funding, are acknowledged for funding this work. The authors also acknowledge the Engineering and Physical Sciences Research Council (EPSRC) grant EP/N032233/1 and the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1 for JEOL JEM-F200 access at Royce@Sheffield. The authors also acknowledge the Applied Chemical and Morphological Analysis Laboratory (ACMAL) at Michigan Tech for use of instruments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mostaed, E., Sikora-Jasinska, M., Wang, L. et al. Tailoring the Mechanical and Degradation Performance of Mg-2.0Zn-0.5Ca-0.4Mn Alloy Through Microstructure Design. JOM 72, 1880–1891 (2020). https://doi.org/10.1007/s11837-020-04085-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-020-04085-9