Skip to main content
Log in

Multilayer Porous Three-Dimensional PM Composite Unbonded Paper Fiber Improves Electrochemical Properties of Nano-Si

  • Electrochemical Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To improve the electrochemical performance of Si-based lithium ion batteries, a novel multilayer microporous three-dimensional porous carbon nanosheet (PC)/multi-walled carbon nanotube (MWCNT) (PM) composite unbonded paper fiber current collector was used to replace copper foil. PM combines the advantages of PC and MWCNTs. MWCNTs provide a good conductive path that promotes electron transport and maintains structural integrity. The three-dimensional interconnected structure of one-dimensional MWCNTs combined with two-dimensional porous PC facilitates rapid electrical/ion transport and good electrolyte penetration. Moreover, PM has a tiny nanostructure. PM is filled, adsorbed and aggregated in the surface of the paper fiber and the gaps between the paper fiber and the paper fiber, which acts to connect the paper fibers and the carrier. The paper fiber has a natural non-agglomerate advantage so that PM/paper fiber (PMP) shows excellent physical properties. The initial coulombic efficiency of the Si-PMP electrode reached 69.3% and maintained a specific discharge capacity of 755 mAh/g at a current density of 0.08 A/g with a capacity retention ratio of 65.2% after 200 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Scrosati, J. Hassoun, and Y.K. Sun, Energy Environ. Sci. 4, 3287 (2011).

    Article  Google Scholar 

  2. R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, J. Mater. Chem. 21, 9938 (2011).

    Article  Google Scholar 

  3. Z.L. Xu, J.K. Kim, and K. Kang, Nano Today 19, 84 (2018).

    Article  Google Scholar 

  4. J. Wang, H. Tang, L. Zhang, H. Ren, R. Yu, Q. Jin, J. Qi, D. Mao, M. Yang, Y. Wang, P. Liu, Y. Zhang, Y. Wen, L. Gu, G. Ma, Z. Su, Z. Tang, H. Zhao, and D. Wang, Nat. Energy 1, 16050 (2016).

    Article  Google Scholar 

  5. H. Wu, G. Yu, L. Pan, N. Liu, M.T. McDowell, Z. Bao, and Y. Cui, Nat. Commun. 4, 1943 (2013).

    Article  Google Scholar 

  6. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).

    Article  Google Scholar 

  7. E. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, and I. Honma, Nano Lett. 8, 2277 (2008).

    Article  Google Scholar 

  8. Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.M. Cheng, ACS Nano 4, 3187 (2010).

    Article  Google Scholar 

  9. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Mater. Today 18, 252 (2015).

    Article  Google Scholar 

  10. M. Yoshio, R.J. Rodd, and A. Kozawa, Lithium-Ion Batteries Science and Technologies (New York: Springer, 2009), p. 11.

    Book  Google Scholar 

  11. V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

    Article  Google Scholar 

  12. J.B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).

    Article  Google Scholar 

  13. K.S. Eom, J.T. Lee, M. Oschatz, F. Wu, S. Kaskel, G. Yushin, and T.F. Fuller, Nat. Commun. 8, 13888 (2017).

    Article  Google Scholar 

  14. Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, and Y. Qian, Electrochim. Acta 127, 252 (2014).

    Article  Google Scholar 

  15. D. Hong, J. Ryu, S. Shin, and S. Park, J. Mater. Chem. A 5, 2095 (2017).

    Article  Google Scholar 

  16. L.S. Jiao, J.Y. Liu, H.Y. Li, T.S. Wu, F. Li, H.Y. Wang, and L. Niu, J. Power Sources 315, 9 (2016).

    Article  Google Scholar 

  17. X. Li, P. Yan, B. Warey, W. Luo, X. Ji, C. Wang, J. Liu, and J.G. Zhang, Nano Energy 20, 68 (2016).

    Article  Google Scholar 

  18. M.V. Shelke, H. Gullapalli, K. Kalaga, M.T.F. Rodrigues, R.R. Devarapalli, R. Vajtai, and P.M. Ajayan, Adv. Mater. Interfaces 4, 1601043 (2017).

    Article  Google Scholar 

  19. T. Wada, J. Yamada, and H. Kato, J. Power Sources 306, 8 (2016).

    Article  Google Scholar 

  20. Y.C. Zhang, Y. You, S. Xin, Y.X. Yin, J. Zhang, P. Wang, X. Zheng, F.F. Cao, and Y.G. Guo, Nano Energy 25, 120 (2016).

    Article  Google Scholar 

  21. W. Ren, Y. Wang, Q. Tan, Z. Zhong, and F. Su, J. Power Sources 332, 88 (2016).

    Article  Google Scholar 

  22. M.K. Jangid, F.J. Sonia, R. Kali, B. Ananthoju, and A. Mukhopadhyay, Carbon 111, 602 (2017).

    Article  Google Scholar 

  23. Y.M. Kim, J. Ahn, S.H. Yu, D.Y. Chung, K.J. Lee, J.K. Lee, and Y.E. Sung, Electrochim. Acta 151, 256 (2015).

    Article  Google Scholar 

  24. T. Wang, J. Zhu, Y. Chen, H. Yang, Y. Qin, F. Li, Q. Cheng, X. Yu, Z. Xu, and B. Lu, J. Mater. Chem. A 5, 4809 (2017).

    Article  Google Scholar 

  25. H.C. Shim, I. Kim, C.S. Woo, H.J. Lee, and S. Hyun, Nanoscale 9, 4713 (2017).

    Article  Google Scholar 

  26. W. Sun, L. Wan, X. Li, X. Zhao, and X. Yan, J. Mater. Chem. A 4, 10948 (2016).

    Article  Google Scholar 

  27. J. Xie, L. Tong, L. Su, Y. Xu, L. Wang, and Y. Wang, J. Power Sources 342, 529 (2017).

    Article  Google Scholar 

  28. Z.L. Xu, X. Liu, Y. Luo, L. Zhou, and J.K. Kim, Prog. Mater. Sci. 90, 1 (2017).

    Article  Google Scholar 

  29. M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson, Nature 381, 678 (1996).

    Article  Google Scholar 

  30. E.W. Wong, P.E. Sheehan, and C.M. Lieber, Science 26, 1971 (1997).

    Article  Google Scholar 

  31. A. Peigney, Ch Laurent, E. Flahaut, R.R. Bacsa, and A. Rousset, Carbon 39, 507 (2001).

    Article  Google Scholar 

  32. K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang, and C.R. Wan, Solid State Ion. 178, 115 (2007).

    Article  Google Scholar 

  33. Wu Yang, Wang Yang, Ailing Song, Gang Sun, and Guangjie Shao, Nanoscale 10, 816 (2018).

    Article  Google Scholar 

  34. D.W. Xu, S. Xin, Y. You, Y. Li, H.P. Cong, and S.H. Yu, ChemNanoMat 2, 712 (2016).

    Article  Google Scholar 

  35. C. Luo, S. Niu, G. Zhou, W. Lv, B. Li, F. Kang, and Q. Yang, Chem. Commun. 52, 121433 (2016).

    Google Scholar 

  36. J. Guo, Y. Xu, and C. Wang, Nano Lett. 11, 4288 (2011).

    Article  Google Scholar 

  37. Y.L. Kim, Y.K. Sun, and S.M. Lee, Electrochim. Acta 53, 4500 (2008).

    Article  Google Scholar 

  38. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.-F. Cui, and Y. Cui, PNAS 106, 21490 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Jiangxi Scientific Fund (20142BBE50071) and Jiangxi Education Fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, X., Wei, C. et al. Multilayer Porous Three-Dimensional PM Composite Unbonded Paper Fiber Improves Electrochemical Properties of Nano-Si. JOM 72, 2226–2234 (2020). https://doi.org/10.1007/s11837-020-04055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04055-1

Navigation