Skip to main content

Emerging Hot Topics and Research Questions in Wrought Magnesium Alloy Development

Abstract

Scientific understanding of the behavior of wrought magnesium alloys is quite mature, with literally thousands of papers published on the topic, along with several reviews. Most of this research is relatively recent, being published after the year 2000. With such a large body of work available to the reader, it could easily be missed that the field of magnesium metallurgy is poised for significant advances. Access to synchrotron and neutron scattering has revealed new knowledge about deformation and fracture behavior, and the complex interaction between solutes, dislocations, interfaces, and disconnections is only just becoming clear. Supercomputing now makes it possible to use atomic-scale simulation techniques to make material calculations such as stacking fault energy predictions, and the simulation of atom-by-atom movement at boundaries and twins in three dimensions is now feasible. Advanced microscopy techniques such as atom probe tomography are allowing us to examine the complex chemical nature of grain boundaries on the nanoscale. These are just some of the areas ripe with potential for new discovery. With so much information available to the reader, it can be difficult to identify those areas of study in which the greatest knowledge gaps exist or those which are most ripe for exploration. For this reason, several authors have teamed up to write this short discussion piece which highlights research areas which the authors agree have the most potential for impact in the field.

This is a preview of subscription content, access via your institution.

References

  1. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101 (2007).

    Article  Google Scholar 

  2. J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, and D. Letzig, Mater. Charact. 101, 144 (2015).

    Article  Google Scholar 

  3. A. Styczynski, C. Hartig, J. Bohlen, and D. Letzig, Scr. Mater. 50, 943 (2004).

    Article  Google Scholar 

  4. S.R. Agnew, M.H. Yoo, and C.N. Tomé, Acta Mater. 49, 4277 (2001).

    Article  Google Scholar 

  5. J.P. Hadorn, K. Hantzsche, S. Yi, J. Bohlen, D. Letzig, J.A. Wollmershauser, and S.R. Agnew, Metall. Mater. Trans. A 43, 1347 (2012).

    Article  Google Scholar 

  6. C. Ha, J. Bohlena, S. Yi, X. Zhou, H.-G. Brokmeier, N. Schell, D. Letzig, and K.U. Kainer, Mater. Sci. Eng., A 761, 138053 (2019).

    Article  Google Scholar 

  7. L.W.F. Mackenzie and M.O. Pekguleryuz, Scr. Mater. 59, 665 (2008).

    Article  Google Scholar 

  8. K. Hantzsche, J. Wendt, K.U. Kainer, J. Bohlen, and D. Letzig, JOM 61, 38 (2009).

    Article  Google Scholar 

  9. J.W. Senn and S.R. Agnew, Proceedings Magnesium Technology in the Global Age (Montreal: Metallurgical Society of CIM, 2006), p. 115.

    Google Scholar 

  10. C. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Acta Mater. 88, 232 (2015).

    Article  Google Scholar 

  11. D. Shi, M.T. Pérez-Prado, and C.M. Cepeda-Jiménez, Acta Mater. 180, 218 (2019).

    Article  Google Scholar 

  12. C.M. Cepeda-Jiménez, M. Castillo-Rodríguez, and M.T. Pérez-Prado, Acta Mater. 165, 164 (2019).

    Article  Google Scholar 

  13. C. Cepeda-Jiménez, J.M. Molina-Aldareguia, F. Carreño, and M.T. Pérez-Prado, Acta Mater. 85, 1 (2015).

    Article  Google Scholar 

  14. C. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Acta Mater. 84, 443 (2015).

    Article  Google Scholar 

  15. B. Raeisinia and S.R. Agnew, Scr. Mater. 63, 731 (2010).

    Article  Google Scholar 

  16. W.B. Hutchinson and M.R. Barnett, Scr. Mater. 63, 737 (2010).

    Article  Google Scholar 

  17. G.P.M. Leyson, L.G. Hector Jr, and W.A. Curtin, Acta Mater. 60, 5197 (2012).

    Article  Google Scholar 

  18. M. Ghazisaeidi, L.G. Hector, and W.A. Curtin, Acta Mater. 80, 278 (2014).

    Article  Google Scholar 

  19. K. Máthis, J. Čapek, B. Clausen, T. Krajňák, and D. Nagarajan, J. Alloys Compd. 642, 185 (2015).

    Article  Google Scholar 

  20. G. Gottstein and T. Al Samman, Mater. Sci. Forum 495–497, 623 (2005).

    Article  Google Scholar 

  21. J. Bohlen, S.B. Yi, J. Swiostek, D. Letzig, H.G. Brokmeier, and K.U. Kainer, Scr. Mater. 53, 259 (2005).

    Article  Google Scholar 

  22. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer, Mater. Sci. Eng., A 527, 7092 (2010).

    Article  Google Scholar 

  23. N. Stanford and M.R. Barnett, Mater. Sci. Eng., A 496, 399 (2008).

    Article  Google Scholar 

  24. T. Al-Samman and G. Gottstein, Mater. Sci. Eng., A 490, 411 (2008).

    Article  Google Scholar 

  25. T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Acta Mater. 60, 537 (2012).

    Article  Google Scholar 

  26. K.D. Molodov, T. Al-Samman, D.A. Molodov, and G. Gottstein, Acta Mater. 76, 314 (2014).

    Article  Google Scholar 

  27. J.W. Cahn and J.E. Taylor, Acta Mater. 52, 4887 (2004).

    Article  Google Scholar 

  28. J.W. Cahn, Y. Mishin, and A. Suzuki, Acta Mater. 54, 4953 (2006).

    Article  Google Scholar 

  29. S.L. Thomas, K. Chen, J. Han, P.K. Purohit, and D.J. Srolovitz, Nat. Commun. 8, 1764 (2017).

    Article  Google Scholar 

  30. C.D. Barrett and H. El Kadiri, Scr. Mater. 84–85, 15 (2014).

    Article  Google Scholar 

  31. C.D. Barrett and H. El Kadiri, Acta Mater. 63, 1 (2014).

    Article  Google Scholar 

  32. J.D. Robson, Metall. Mater. Trans. A 45, 3205 (2014).

    Article  Google Scholar 

  33. D. Griffiths, Mater. Sci. Technol. 31, 10 (2015).

    MathSciNet  Article  Google Scholar 

  34. I. Basu, K.G. Pradeep, C. Mießen, L.A. Barrales-Mora, and T. Al-Samman, Acta Mater. 116, 77 (2016).

    Article  Google Scholar 

  35. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.-F. Zhu, J. Neugebauer, and D. Raabe, Acta Mater. 60, 3011 (2012).

    Article  Google Scholar 

  36. J.A. Yasi, L.G. Hector, and D.R. Trinkle, Acta Mater. 58, 5704 (2010).

    Article  Google Scholar 

  37. J. Bohlen, G. Cano, D. Drozdenko, P. Dobron, K.U. Kainer, S. Gall, S. Müller, and D. Letzig, Metals 8, 147 (2018).

    Article  Google Scholar 

  38. I.-H. Jung, M. Sanjari, J. Kim, and S. Yue, Scr. Mater. 102, 1 (2015).

    Article  Google Scholar 

  39. J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono, Acta Mater. 56, 6061 (2008).

    Article  Google Scholar 

  40. S. Yi, J.H. Park, D. Letzig, O.D. Kwon, K.U. Kainer, and J.J. Kim, Magnes. Technol. 2016, 383 (2016).

    Google Scholar 

  41. J.A. Chapman and D.V. Wilson, J. Inst. Met. 91, 39 (1962).

    Google Scholar 

  42. T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa, and K. Higashi, Mater. Trans. 42, 1177 (2001).

    Article  Google Scholar 

  43. M.R. Barnett, Mater. Sci. Eng., A 464, 1 (2007).

    Article  Google Scholar 

  44. M.R. Barnett, Mater. Sci. Eng., A 464, 8 (2007).

    Article  Google Scholar 

  45. S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown, Scr. Mater. 50, 377 (2004).

    Article  Google Scholar 

  46. R. Gehrmann, M.M. Frommert, and G. Gottstein, Mater. Sci. Eng., A 395, 338 (2005).

    Article  Google Scholar 

  47. R.K. Mishra, A.K. Gupta, P.R. Rao, A.K. Sachdev, A.M. Kumar, and A.A. Luo, Scr. Mater. 59, 562 (2008).

    Article  Google Scholar 

  48. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw, Acta Mater. 53, 3135 (2005).

    Article  Google Scholar 

  49. T. Al-Samman and X. Li, Mater. Sci. Eng., A 528, 3809 (2011).

    Article  Google Scholar 

  50. N. Stanford, D. Atwell, and M.R. Barnett, Acta Mater. 58, 6773 (2010).

    Article  Google Scholar 

  51. N. Stanford, D. Atwell, A. Beer, C. Davies, and M.R. Barnett, Scr. Mater. 59, 772 (2008).

    Article  Google Scholar 

  52. S.R. Agnew, C.N. Tomè, D.W. Brown, T.M. Holden, and S.C. Vogel, Scr. Mater. 48, 1003 (2003).

    Article  Google Scholar 

  53. S.R. Agnew, D.W. Brown, and C.N. Tomè, Acta Mater. 54, 4841 (2006).

    Article  Google Scholar 

  54. G. Timár and J.Q. da Fonseca, Metall. Mater. Trans. A 45, 5883 (2014).

    Article  Google Scholar 

  55. S. Sandlöbes, Z. Pei, M. Friák, L.F. Zhu, F. Wang, S. Zaefferer, D. Raabe, and J. Neugebauer, Acta Mater. 70, 92 (2014).

    Article  Google Scholar 

  56. Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, and W.A. Curtin, Science 359, 447 (2018).

    Article  Google Scholar 

  57. I. Polmear, D. St. John, J.F. Nie, and M. Qian, Light Alloys Metallurgy of the Light Metals, 5th ed. (Oxford: Butterworth-Heinemann, 2017), pp. 287–366.

    Google Scholar 

  58. G.E. Dieter, Mechanical Metallurgy, SI Metric ed. (New York: McGraw-Hill Book, 1988), pp. 283–301.

    Google Scholar 

  59. J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, 2nd ed. (Oxford UK: Butterworth-Heinemann, 2002), pp. 61–80.

    Google Scholar 

  60. Y. Chino, M. Kado, and M. Mabuchi, Mater. Sci. Eng., A 494, 343 (2008).

    Article  Google Scholar 

  61. M. Boba, C. Butcher, N. Panahi, M.J. Worswick, R.K. Mishra, and J.T. Carter, Int. J. Mater. Form. 10, 181 (2017).

    Article  Google Scholar 

  62. S. Yi, J. Bohlen, F. Heinemann, and D. Letzig, Acta Mater. 58, 592 (2010).

    Article  Google Scholar 

  63. M.J. Nemcko, J. Li, and D.S. Wilkinson, J. Mech. Phys. Solids 95, 270 (2016).

    Article  Google Scholar 

  64. M.J. Nemcko, H. Qiao, P. Wu, and D.S. Wilkinson, Acta Mater. 113, 68 (2016).

    Article  Google Scholar 

  65. M.J. Nemcko and D.S. Wilkinson, Mater. Sci. Eng., A 676, 146 (2016).

    Article  Google Scholar 

  66. M.J. Nemcko and D.S. Wilkinson, Int. J. Fract. 200, 31 (2016).

    Article  Google Scholar 

  67. J.T. Lloyd, A.J. Matejunas, R. Becker, T.R. Walter, M.W. Priddy, and J. Kimberley, Int. J. Plast 114, 174 (2019).

    Article  Google Scholar 

  68. S.H.M. Azghandi, PhD Thesis Influence of Grain Size on Ductile Failure of Magnesium Alloys (Deakin University, 2019).

  69. A.K. Ray and D.S. Wilkinson, Mater. Sci. Eng., A 658, 33 (2016).

    Article  Google Scholar 

  70. L. Wang, G. Huang, T. Han, E. Mostaed, F. Pan, and M. Vedani, Mater. Des. 68, 80 (2015).

    Article  Google Scholar 

  71. J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012).

    Article  Google Scholar 

  72. N. Stanford, J. Geng, Y.B. Chun, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Acta Mater. 60, 218 (2012).

    Article  Google Scholar 

  73. J.D. Robson, N. Stanford, and M.R. Barnett, Acta Mater. 59, 1945 (2011).

    Article  Google Scholar 

  74. J. Wang and N. Stanford, Acta Mater. 100, 53 (2015).

    Article  Google Scholar 

  75. J.J. Bhattacharyya, F. Wang, N. Stanford, and S.R. Agnew, Acta Mater. 146, 55 (2018).

    Article  Google Scholar 

  76. E.L.S. Solomon and E.A. Marquis, Mater. Lett. 216, 67 (2018).

    Article  Google Scholar 

  77. J.B. Clark, Acta Metall. 13, 1281 (1965).

    Article  Google Scholar 

  78. J.S. Chun, J.G. Byrne, and A. Bornemann, Phil. Mag. 20, 291 (1969).

    Article  Google Scholar 

  79. N. Stanford and M.R. Barnett, Mater. Sci. Eng., A 516, 226 (2009).

    Article  Google Scholar 

  80. J.D. Robson, N. Stanford, and M.R. Barnett, Scr. Mater. 63, 823 (2010).

    Article  Google Scholar 

  81. N. Stanford, A.S. Taylor, P. Cizek, F. Siska, M. Ramajayam, and M.R. Barnett, Scr. Mater. 67, 704 (2012).

    Article  Google Scholar 

  82. J. Geng, Y.B. Chun, N. Stanford, C.H.J. Davies, J.F. Nie, and M.R. Barnett, Mater. Sci. Eng., A 528, 3659 (2011).

    Article  Google Scholar 

  83. J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri, Scr. Mater. 62, 310 (2010).

    Google Scholar 

  84. J.D. Robson, Acta Mater. 121, 277 (2016).

    Article  Google Scholar 

  85. M. Nishijima, K. Yubuta, and K. Hiraga, Mater. Trans. 48, 84 (2007).

    Article  Google Scholar 

  86. J.F. Nie, Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Science 340, 957 (2013).

    Article  Google Scholar 

  87. C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Acta Mater. 57, 749 (2009).

    Article  Google Scholar 

  88. N. Stanford, G. Sha, A. La Fontaine, M.R. Barnett, and S.P. Ringer, Metall. Mater. Trans. A 40, 2480 (2009).

    Article  Google Scholar 

  89. S. Celotto, Acta Mater. 48, 1775 (2000).

    Article  Google Scholar 

  90. O. Engler, Mater. Sci. Eng., A 538, 69 (2012).

    Article  Google Scholar 

  91. M. Gong, G. Liu, J. Wang, L. Capolungo, and C.N. Tomé, Acta Mater. 155, 187 (2018).

    Article  Google Scholar 

  92. S. Sandlöbes, M. Friák, S. Korte-Kerzel, Z. Pei, J. Neugebauer, and D. Raabe, Sci. Rep. 7, 10458 (2017).

    Article  Google Scholar 

  93. R. Schmid-Fetzer and J. Gröbner, Adv. Eng. Mater. 3, 947 (2001).

    Article  Google Scholar 

  94. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Nature 559, 547 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Fan from BCAST at Brunel University London for hosting the Mg2018 conference from which this article was developed. The assistance of Dr. N. Schmerl with the referencing of this text is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Stanford.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Prado, MT., Bohlen, J., Yi, S. et al. Emerging Hot Topics and Research Questions in Wrought Magnesium Alloy Development. JOM 72, 2561–2567 (2020). https://doi.org/10.1007/s11837-020-04051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04051-5