Skip to main content
Log in

Microstructure and Fracture Toughness of Compact TiC-Fe Gradient Coating Fabricated on Cast Iron Substrate by Two-Step In Situ Reaction

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A compact TiC-Fe gradient coating with high hardness and toughness has been fabricated on cast iron by two-step in situ reaction. The phase constitution of the coating was TiC and α-Fe. As the thickness of the coating was increased, the size (about 6.34 μm to 0.54 μm) and volume fraction of TiC particles gradually decreased. The formation mechanism of TiC was nucleation-growth of TiC grains (the first step of the in situ reaction) and the diffusion-type solid-phase transition via diffusion of carbon atoms into the titanium lattice (the second step of the in situ reaction). From the surface of the coating to the coating–substrate interface, the hardness and elastic modulus gradually decreased from 30.74 ± 0.61 GPa and 438.47 ± 4.82 GPa to 21.67 ± 1.03 GPa and 380.71 ± 5.86 GPa, respectively. Meanwhile, t he fracture toughness gradually increased from 3.21 MPa m1/2 to 6.75 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Xiong, Z. Guo, M. Yang, W. Wan, and G. Dong, Ceram. Int. 39, 337 (2013).

    Article  Google Scholar 

  2. M. Zhang, X. Liu, H. Shang, and J. Lin, Surf. Coat. Technol. 362, 381 (2019).

    Article  Google Scholar 

  3. Q. Wang, F. Zhou, Q. Ma, M. Callisti, T. Polcar, and J. Yan, Appl. Surf. Sci. 443, 635 (2018).

    Article  Google Scholar 

  4. R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Article  Google Scholar 

  5. F. Bouville, E. Maire, S. Meille, B. Van de Moortele, A.J. Stevenson, and S. Deville, Nat. Mater. 13, 508 (2014).

    Article  Google Scholar 

  6. X. Cai, Y. Xu, M. Liu, L. Zhong, and F. Bai, J. Alloys Compd. 712, 204 (2017).

    Article  Google Scholar 

  7. K. Yalamanchili, I.C. Schramm, E. Jiménez-Piqué, L. Rogström, F. Mücklich, M. Odén, and N. Ghafoor, Acta Mater. 89, 22 (2015).

    Article  Google Scholar 

  8. H. Ju and J. Xu, Appl. Surf. Sci. 355, 878 (2015).

    Article  Google Scholar 

  9. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 45LT02 (2018).

    Article  Google Scholar 

  10. J. Narayan, S. Gupta, A. Bhaumik, R. Sachan, F. Cellini, and E. Riedo, MRS Commun. 8, 428 (2018).

    Article  Google Scholar 

  11. S. Gupta, R. Sachan, A. Bhaumik, P. Pant, and J. Narayan, MRS Commun. 8, 533 (2018).

    Article  Google Scholar 

  12. N. Zhao, Y. Xu, X. Huang, L. Zhong, and J. Lu, Ceram. Int. 42, 18507 (2016).

    Article  Google Scholar 

  13. H. Cetinel, B. Uyulgan, C. Tekmen, I. Ozdemir, and E. Celik, Surf. Coat. Technol. 174, 1089 (2003).

    Article  Google Scholar 

  14. X. Jin, L. Wu, Y. Sun, and L. Guo, Mater. Sci. Eng., A 509, 63 (2009).

    Article  Google Scholar 

  15. Y. Li, W. Zhang, J. Fei, D. Zhang, and W. Chen, Mater. Sci. Eng. A 391, 124 (2005).

    Article  Google Scholar 

  16. M. Naebe and K. Shirvanimoghaddam, Appl. Mater. Today 5, 223 (2016).

    Article  Google Scholar 

  17. N. Zhao, Y. Xu, L. Zhong, Y. Yan, K. Song, L. Shen, and V.E. Ovcharenko, Ceram. Int. 41, 12950 (2015).

    Article  Google Scholar 

  18. M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, M.P. Dariel, A. Weisheit, R. Galun, and B.L. Mordike, Mater. Sci. Eng. A 302, 106 (2001).

    Article  Google Scholar 

  19. M. Rezapoor, M. Razavi, M. Zakeri, M.R. Rahimipour, and L. Nikzad, Ceram. Int. 44, 22378 (2018).

    Article  Google Scholar 

  20. Y. Shi, Y. Li, J. Liu, and Z. Yuan, Opt. Laser Technol. 99, 256 (2018).

    Article  Google Scholar 

  21. D. Chen, D. Liu, Y. Liu, H. Wang, and Z. Huang, Surf. Coat. Technol. 239, 28 (2014).

    Article  Google Scholar 

  22. A.S. Demirkıran and E. Avcı, Surf. Coat. Technol. 116, 292 (1999).

    Article  Google Scholar 

  23. X. He, P. Song, X. Yu, C. Li, T. Huang, Y. Zhou, Q. Li, K. Lü, J. Lü, and J. Lu, Ceram. Int. 44, 20798 (2018).

    Article  Google Scholar 

  24. M. Biesuz and V.M. Sglavo, Surf. Coat. Technol. 286, 319 (2016).

    Article  Google Scholar 

  25. X. Fan, Z. Yang, C. Zhang, Y. Zhang, and H. Che, Surf. Coat. Technol. 205, 641 (2010).

    Article  Google Scholar 

  26. Y. Ma, Y. Zhang, X. Yao, X. Zhang, X. Shu, and B. Tang, Surf. Coat. Technol. 226, 75 (2013).

    Article  Google Scholar 

  27. H. Bai, L. Zhong, Z. Shang, Y. Xu, H. Wu, J. Bai, and Y. Ding, J. Alloys Compd. 771, 406 (2019).

    Article  Google Scholar 

  28. D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Acta Mater. 55, 4277 (2007).

    Article  Google Scholar 

  29. S. Fan, L. Zhong, Y. Xu, Y. Fu, and L. Wang, Adv. Eng. Mater. 17, 1562–1567 (2015).

    Article  Google Scholar 

  30. L. Zhong, T. Wu, X. Zhang, S. Fan, L. Wang, and S. Chen, Mater. Sci. 21, 1392 (2015).

    Google Scholar 

  31. M. Zhang, Q. Hu, B. Huang, J. Li, and J. Li, Int. J. Refract. Met. Hard Mater. 29, 356 (2011).

    Article  Google Scholar 

  32. J. Zhu, L. Zhong, Y. Xu, X. Cai, F. Bai, Y. Ding, Z. Lu, and H. Wu, Vacuum 155, 631 (2018).

    Article  Google Scholar 

  33. H. Zhu, K. Dong, H. Wang, J. Huang, J. Li, and Z. Xie, Powder Technol. 246, 456 (2013).

    Article  Google Scholar 

  34. A. Miriyev, M. Sinder, and N. Frage, Acta Mater. 75, 348 (2014).

    Article  Google Scholar 

  35. X. Cai, L. Zhong, Y. Xu, Z. Lu, J. Li, J. Zhu, Y. Ding, and H. Yan, J. Alloys Compd. 747, 8 (2018).

    Article  Google Scholar 

  36. I.W. Chen and X.H. Wang, Nature 404, 168 (2000).

    Article  Google Scholar 

  37. S. Gupta, A. Moatti, A. Bhaumik, R. Sachan, and J. Narayan, Acta Mater. 166, 221 (2019).

    Article  Google Scholar 

  38. J.A. Nicholas, W.G. Robin, and J.M. Ken, J. Mater. Sci. 42, 1884 (2007).

    Article  Google Scholar 

  39. Z. Xie, M. Lugovy, N. Orlovskaya, T. Graule, J. Kuebler, M. Mueller, H. Gao, M. Radovic, and D.A. Cullen, J. Alloys Compd. 634, 168 (2015).

    Article  Google Scholar 

  40. N. Zhao, Y. Zhao, X. Wang, K. Tang, Y. Xu, Y. Wei, F. Yan, W. Meng, L. Wu, and Y. Fei, Mater. Res. Express 5, 065 (2018).

    Google Scholar 

  41. R.O. Ritchie, Mater. Sci. Eng. A 103, 15 (1988).

    Article  Google Scholar 

  42. A.G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

    Article  Google Scholar 

  43. X. Cai, L. Zhong, Y. Xu, X. Li, and M. Liu, Surf. Coat. Technol. 357, 784 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51704232), Key-point Research and Invention Program of Shaanxi Province (Grant No. 2017ZDXM-GY-032), International Research Center for Composite and Intelligent Manufacturing Technology (Grant No. 2018GHJD-17), and Innovation Capability Support Program of Shaanxi Province (Grant No. 2019-TD019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisheng Zhong or Yunhua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, H., Zhong, L., Shang, Z. et al. Microstructure and Fracture Toughness of Compact TiC-Fe Gradient Coating Fabricated on Cast Iron Substrate by Two-Step In Situ Reaction. JOM 72, 2154–2163 (2020). https://doi.org/10.1007/s11837-020-04047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04047-1

Navigation