Skip to main content
Log in

Incremental Forming of the Al-Li Alloy AA2195: Role of Texture and Microstructure

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study deals with the evolution of crystallographic texture during secondary processing of aluminium-lithium alloy AA2195 sheets and its effect on the single-point incremental forming (SPIF) process. Significantly different textures were generated in AA2195 alloy sheets by the unidirectional rolling (UDR) and multi-step cross-rolling (MSCR) processes followed by subsequent annealing. The differently textured sheets were then subjected to the SPIF process. For UDR processed sheets, the texture was the strong copper type (Cu-type), whereas in MSCR processed sheets, the texture comprised weak fibres. The UDR samples with strong texture experienced cracking during incremental forming, whereas the MSCR samples could be formed without any cracks. Detailed analyses of the microstructure and texture were performed at various locations on the incrementally formed part to understand the deformation micromechanism at specific locations on the formed component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Fan, L. Gao, G. Hussain, and Z. Wu, Int. J. Machine Tools Manuf. 48, 1688 (2008).

    Google Scholar 

  2. T. Kim and D. Yang, Int. J. Mech. Sci. 42, 1271 (2000).

    Google Scholar 

  3. M.-S. Shim and J.-J. Park, J. Mater. Process. Technol. 113, 654 (2001).

    Google Scholar 

  4. X.H. Cui, J.H. Mo, J.J. Li, J. Zhao, Y. Zhu, L. Huang, Z.W. Li, and K. Zhong, J. Mater. Process. Technol. 214, 409 (2014).

    Google Scholar 

  5. L. Edward, Apparatus and process for incremental dieless forming, Uniter States Patent 3342051 (1967). Edward, Leszak, http://www.freepatentsonline.com/3342051.html.

  6. J. Jeswiet, J.R. Duflou, and A. Szekeres, Adv. Mater. Res. 6–8, 4496 (2005).

    Google Scholar 

  7. W. Emmens, G. Sebastiani, and A.H. van den Boogaard, J. Mater. Process. Technol. 210, 981 (2010).

    Google Scholar 

  8. J. Cao, Y. Huang, N.V. Reddy, R. Malhotra, and Y. Wang, Incremental sheet metal forming: Advances and challenges. 1967–1982. Paper presented at 9th International Conference on Technology of Plasticity, ICTP 2008, Gyeongju, Republic of Korea (2008).

  9. C. Wong, T. Dean, and J. Lin, Int. J. Machine Tools Manuf. 43, 1419 (2003).

    Google Scholar 

  10. P. Shrivastava and P. Tandon, J. Mater. Process. Technol. 266, 292 (2019).

    Google Scholar 

  11. B. Taleb Araghi, A. Göttmann, M. Bambach, G. Hirt, G. Bergweiler, J. Diettrich, M. Steiners, and A. Saeed-Akbari, Prod. Eng. 5, 393 (2011).

    Google Scholar 

  12. H. Iseki, An experimental and theoretical study of a forming limit curve in incremental forming of sheet metal using spherical roller. Proc. Met. Form557 (2000).

  13. W. Emmens and A.H. van den Boogaard, J. Mater. Process. Technol. 209, 3688 (2009).

    Google Scholar 

  14. K.U. Yazar, S. Mishra, K. Narasimhan, and P.P. Date, Int. J. Adv. Manuf. Technol. 101, 2355 (2019).

    Google Scholar 

  15. J. Allwood, D. Shouler, and A.E. Tekkaya, Key Eng. Mater. 549, 372 (2007).

    Google Scholar 

  16. R. Esmaeilpour, H. Kim, T. Park, F. Pourboghrat, and B. Mohammed, Int. J. Mech. Sci. 133, 544 (2017).

    Google Scholar 

  17. F. Maqbool and M. Bambach, Int. J. Mech. Sci. 136, 279 (2018).

    Google Scholar 

  18. P. Flores, L. Duchene, C. Bouffioux, T. Lelotte, C. Henrard, N. Pernin, A.V. Bael, S. He, J. Duflou, and A.M. Habraken, Int. J. Plast. 23, 420 (2007).

    Google Scholar 

  19. Y. Li, W.J. Daniel, and P.A. Meehan, Int. J. Adv. Manuf. Technol. 88, 255 (2017).

    Google Scholar 

  20. K. Inal, R.K. Mishra, and O. Cazacu, Int. J. Solids Struct. 47, 2223–2233 (2010).

    Google Scholar 

  21. R. Crooks, Z. Wang, V.I. Levit, and R.N. Shenoy, Mater. Sci. Eng., A 257, 145 (1998).

    Google Scholar 

  22. K. Jata, S. Panchanadeeswaran, and A. Vasudevan, Mater. Sci. Eng. A 257, 37–46 (1998).

    Google Scholar 

  23. R. Madhavan, R. Kalsar, R.K. Ray, and S. Suwas, IOP Conf. Ser. Mater. Sci. Eng. 82, 012031 (2015).

    Google Scholar 

  24. R. Madhavan, R. Ray, and S. Suwas, Philos. Mag. 96, 3177 (2016).

    Google Scholar 

  25. S. Roy, D. Satyaveer Singh, S. Suwas, S. Kumar, and K. Chattopadhyay, Mater. Sci. Eng. A 528, 8469 (2011).

    Google Scholar 

  26. R.J. Rioja and J. Liu, Metall. Mater. Trans. A 43, 3325 (2012).

    Google Scholar 

  27. N.J. Kim and E.W. Lee, Acta Metall. Mater. 41, 941 (1993).

    Google Scholar 

  28. E.W. Lee, P.N. Kalu, L. Brandao, O.S. Es-Said, J. Foyos, and H. Garmestani, Mater. Sci. Eng., A 265, 100 (1999).

    Google Scholar 

  29. O.S. Es-Said, C.J. Parrish, C.A. Bradberry, J.Y. Hassoun, R.A. Parish, A. Nash, and N.C. Smythe, et al., J. Mater. Eng. Perform. 20, 1171 (2011).

    Google Scholar 

  30. A. Vasudevan, M. Przystupa, and W. Fricke Jr, Mater. Sci. Eng., A 196, 1 (1995).

    Google Scholar 

  31. Q. Contrepois, C. Maurice, and J. Driver, Mater. Sci. Eng., A 527, 7305 (2010).

    Google Scholar 

  32. N. Gurao, S. Sethuraman, and S. Suwas, Mater. Sci. Eng., A 528, 7739 (2011).

    Google Scholar 

  33. S. Suwas, A.K. Singh, K. Narasimha Rao, and T. Singh, Z. Metallkunde 94, 1313 (2003).

    Google Scholar 

  34. P. Kalu and L. Zhang, Scr. Mater. 39, 175 (1998).

    Google Scholar 

  35. X.Y. Wen, Z.D. Long, W.M. Yin, T. Zhai, Z. Li, and S.K. Das, Texture evolution in continuous casting AA5052 aluminum alloy hot band during equi-biaxial stretching, in Aluminum Wrought Products for Automotive, Packaging, and Other Applications—The James Morris Honorary Symposium, TMS (2006).

  36. O. Engler and J. Aegerter, Mater. Sci. Eng., A 618, 663 (2014).

    Google Scholar 

  37. J. Hirsch and K. Lücke, Acta Metall. 36, 2863 (1988).

    Google Scholar 

  38. J. Hirsch and K. Lücke, Acta Metall. 36, 2883 (1988).

    Google Scholar 

  39. J. Hirsch, K. Lücke, and M. Hatherly, Acta Metall. 36, 2905 (1988).

    Google Scholar 

  40. J. Hirsch, E. Nes, and K. Lücke, Acta Metall. 35, 427 (1987).

    Google Scholar 

  41. R. Ray, Acta Metall. Mater. 43, 3861 (1995).

    Google Scholar 

  42. O. Engler, J. Hirsch, and K. Lücke, Acta Metall. 37, 2743 (1989).

    Google Scholar 

  43. R. Madhavan, R. Ray, and S. Suwas, Acta Mater. 74, 151 (2014).

    Google Scholar 

  44. R. Madhavan, R. Ray, and S. Suwas, Acta Mater. 78, 222 (2014).

    Google Scholar 

  45. R. Madhavan and S. Suwas, Philos. Mag. Lett. 94, 548 (2014).

    Google Scholar 

  46. S. Suwas, A.K. Singh, K. Narasimha Rao, and T. Singh, Z. Metallkunde 93, 918 (2002).

    Google Scholar 

  47. S. Suwas and A. Singh, Mater. Sci. Eng., A 356, 368 (2003).

    Google Scholar 

  48. S. Suwas and N. Gurao, Development of microstructures and textures by cross rolling. Comput. Mater. Process. 3, 81–106 (2014).

    Google Scholar 

  49. S.H. Kim, H.G. Kang, M.Y. Huh, and O. Engler, Mater. Sci. Eng. A 508, 121 (2009).

    Google Scholar 

  50. M. Huh, S. Cho, and O. Engler, Mater. Sci. Eng., A 315, 35 (2001).

    Google Scholar 

  51. S.-H. Hong and D.N. Lee, J. Eng. Mater. Technol. 124, 13 (2002).

    Google Scholar 

  52. J. Kallend and G. Davies, Philos. Mag. 25, 471 (1972).

    Google Scholar 

  53. I.L. Dillamore, P.L. Morris, C.J.E. Smith, and W.B. Hutchinson, Proc. R. Soc. Lond. A 1756, 1447 (1972).

    Google Scholar 

  54. I. Dillamore, E. Butler, and D. Green, Met. Sci. J. 2, 161 (1968).

    Google Scholar 

  55. O. Engler and K. Lücke, Texture Stress Microstruct. 14, 727 (1991).

    Google Scholar 

  56. I. Dillamore and H. Katoh, Met. Sci. 8, 73 (1974).

    Google Scholar 

  57. F. Humphrey and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon, ISBN, 1996).

    Google Scholar 

  58. K. Lücke, Can. Metall. Q. 13, 261 (1974).

    Google Scholar 

  59. M. Ghosh, A. Miroux, and L. Kestens, J. Alloys Compd. 619, 585 (2015).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Boeing Co. for funding this work. The extensive use of microscopes at the Advanced Facility of Microscopy and Microanalysis (AFMM) facility and XRD at the institute’s x-ray facility, Indian Institute of Science, Bangalore is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suwas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, A.M., Kalsar, R., Shivashankar, P. et al. Incremental Forming of the Al-Li Alloy AA2195: Role of Texture and Microstructure. JOM 72, 1647–1655 (2020). https://doi.org/10.1007/s11837-020-04041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04041-7

Navigation