Skip to main content
Log in

Achieving High Ductility in Hot-Rolled Mg-xZn-0.2Ca-0.2Ce Sheet by Zn Addition

  • Aluminum and Magnesium: New Alloys and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The mechanical behavior of hot-rolled Mg-xZn-0.2Ca-0.2Ce (x = 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, 2.0 wt.%) was studied by the uniaxial tension test. Meanwhile, the microstructure and texture were analyzed using an optical microscope, x-ray diffraction and scanning electron microscope. The sheets exhibited a bimodal basal texture along the transverse direction (TD). Zn addition led to an increase of the TD tilted texture component and a reduction of the rolling direction tilted texture component. However, the yield strengths were not always increasing when the amount of Zn increased, which was related to the solid solution softening and unique texture distribution. The best ductility and formability were obtained in Mg-1.5Zn-0.2Ca-0.2Ce alloy with fracture elongation of ~ 42.1% and Erichsen value of 7.7 mm. The enhanced plasticity and formability were owing to the modified texture, non-basal slips and enhanced grain boundary cohesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Guan, W.M. Rainforth, J. Gao, L. Ma, and B. Wynne, Acta Mater. 145, 399–412 (2018).

    Google Scholar 

  2. P. Chen, F. Wang, J. Ombogo, and B. Li, Mater. Sci. Eng., A 739, 173–185 (2019).

    Google Scholar 

  3. J. Zhang, S. Liu, R. Wu, L. Hou, M. Zhang, and J. Magnes, Alloy 000, 1–15 (2018).

    Google Scholar 

  4. S.R. Niezgoda, A.K. Kanjarla, I.J. Beyerlein, and C.N. Tomé, Int. J. Plasticity. 56, 119–138 (2014).

    Google Scholar 

  5. M.Z. Bian, T.T. Sasaki, T. Nakata, S. Kamado, and K. Hono, Mater. Sci. Eng., A 730, 147–154 (2018).

    Google Scholar 

  6. D. Hou, T. Liu, H. Chen, D. Shi, C. Ran, and F. Pan, Mater. Sci. Eng., A 660, 102–107 (2016).

    Google Scholar 

  7. A. Moitra, S.-G. Kim, and M.F. Horstemeyer, Acta Mater. 75, 106–112 (2014).

    Google Scholar 

  8. Y. Du, M. Zheng, X. Qiao, D. Wang, W. Peng, K. Wu, and B. Jiang, Mater. Sci. Eng., A 656, 67–74 (2016).

    Google Scholar 

  9. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, Acta Mater. 55, 2101–2112 (2007).

    Google Scholar 

  10. Y. Chino, M. Kado, and M. Mabuchi, Acta Mater. 56, 387–394 (2008).

    Google Scholar 

  11. Y. Chino, X. Huang, K. Suzuki, and M. Mabuchi, Mater. Trans. 51, 818–821 (2010).

    Google Scholar 

  12. A. Javaid, F. Czerwinski, and J. Magnes, Alloy 7, 27–37 (2019).

    Google Scholar 

  13. Y. Chino, K. Sassa, and M. Mabuchi, Mater. Sci. Eng., A 513–514, 394–400 (2009).

    Google Scholar 

  14. P. Liu, H. Jiang, Z. Cai, Q. Kang, Y. Zhang, and J. Magnes, Alloy 4, 188–196 (2016).

    Google Scholar 

  15. I.-H. Jung, M. Sanjari, J. Kim, and S. Yue, Scripta Mater. 102, 1–6 (2015).

    Google Scholar 

  16. X. Zheng, W. Du, K. Liu, Z. Wang, S. Li, and J. Magnes, Alloy 4, 135–139 (2016).

    Google Scholar 

  17. M.Z. Bian, Z.R. Zeng, S.W. Xu, S.M. Zhu, Y.M. Zhu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Adv. Eng. Mater. 18, 1763–1769 (2016).

    Google Scholar 

  18. G. Wang, G. Huang, X. Chen, Q. Deng, A. Tang, B. Jiang, and F. Pan, Mater. Sci. Eng., A 705, 46–54 (2017).

    Google Scholar 

  19. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2001), pp. 446–450

    Google Scholar 

  20. C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, and A. Atrens, J. Mater. Sci. Technol. 35, 142–150 (2019).

    Google Scholar 

  21. Z.R. Zeng, M.Z. Bian, S.W. Xu, C.H.J. Davies, N. Birbilis, and J.F. Nie, Mater. Sci. Eng., A 674, 459–471 (2016).

    Google Scholar 

  22. P.M. Jardim, G. Solórzano, and J.B.V. Sande, Mater. Sci. Eng., A 381, 196–205 (2004).

    Google Scholar 

  23. B. Langelier, A.M. Nasiri, S.Y. Lee, M.A. Gharghouri, and S. Esmaeili, Mater. Sci. Eng., A 620, 76–84 (2015).

    Google Scholar 

  24. L.Y. Wei and G.L. Dunlop, J. Mater. Sci. Lett. 15, 4–7 (1996).

    Google Scholar 

  25. M.R. Barnett, M.D. Nave, and A. Ghaderi, Acta Mater. 60, 1433–1443 (2012).

    Google Scholar 

  26. A. Rollett, F. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena (Amsterdam: Elsevier, 2004).

    Google Scholar 

  27. Y. Wang, Y. Xin, H. Yu, L. Lv, and Q. Liu, J. Alloy. Compd. 644, 147–154 (2015).

    Google Scholar 

  28. F.-W. Bach, M. Rodman, A. Rossberg, B.-A. Behrens, and G. Kurzare, JOM 57, 57–61 (2005).

    Google Scholar 

  29. N. Stanford and M.R. Barnett, Int. J. Plasticity. 47, 165–181 (2013).

    Google Scholar 

  30. M. Yuasa, N. Miyazawa, M. Hayashi, M. Mabuchi, and Y. Chino, Acta Mater. 83, 294–303 (2015).

    Google Scholar 

  31. T. Hase, T. Ohtagaki, M. Yamaguchi, N. Ikeo, and T. Mukai, Acta Mater. 104, 283–294 (2016).

    Google Scholar 

  32. J. Wang, X. Zhang, X. Lu, Y. Yang, Z. Wang, and J. Magnes, Alloy 4, 207–213 (2016).

    Google Scholar 

  33. F. Guo, D. Zhang, X. Yang, L. Jiang, S. Chai, and F. Pan, Mater. Sci. Eng., A 607, 383–389 (2014).

    Google Scholar 

  34. A. Styczynski, C. Hartig, J. Bohlen, and D. Letzig, Scripta Mater. 50, 943–947 (2004).

    Google Scholar 

  35. S. Agnew, M. Yoo, and C. Tome, Acta Mater. 49, 4277–4289 (2001).

    Google Scholar 

  36. J. Robson, D. Henry, and B. Davis, Acta Mater. 57, 2739–2747 (2009).

    Google Scholar 

  37. T. Al-Samman, Mater. Sci. Eng., A 560, 561–566 (2013).

    Google Scholar 

  38. J. Bohlen, J. Wendt, M. Nienaber, K.U. Kainer, L. Stutz, and D. Letzig, Mater. Charact. 101, 144–152 (2015).

    Google Scholar 

  39. L.B. Tong, M.Y. Zheng, L.R. Cheng, D.P. Zhang, S. Kamado, J. Meng, and H.J. Zhang, Mater. Charact. 104, 66–72 (2015).

    Google Scholar 

  40. T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Acta Mater. 60, 537–545 (2012).

    Google Scholar 

  41. M.A. Steiner, J.J. Bhattacharyya, and S.R. Agnew, Acta Mater. 95, 443–455 (2015).

    Google Scholar 

  42. S. Biswas, B. Beausir, L.S. Toth, and S. Suwas, Acta Mater. 61, 5263–5277 (2013).

    Google Scholar 

  43. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1339–1349 (1969).

    Google Scholar 

  44. A. Akhtar and E. Teghtsoonian, Acta Metall. 17, 1351-1356 (1969).

    Google Scholar 

  45. P. Lukáč, physica status solidi (a) 131(2) 377-390 (1992).

    Google Scholar 

  46. A. Akhtar and E. Teghtsoonian, Phil. Mag. 25, 897–916 (1972).

    Google Scholar 

  47. J.A. del Valle, F. Carreño, and O.A. Ruano, Acta Mater. 54, 4247–4259 (2006).

    Google Scholar 

  48. X. Huang, K. Suzuki, A. Watazu, I. Shigematsu, and N. Saito, Mater. Sci. Eng., A 488, 214–220 (2008).

    Google Scholar 

  49. Y. Chino, H. Iwasaki, and M. Mabuchi, Mater. Sci. Eng., A 466, 90–95 (2007).

    Google Scholar 

  50. Y. Chino, X. Huang, K. Suzuki, K. Sassa, and M. Mabuchi, Mater. Sci. Eng., A 528, 566–572 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan (2016YFB0301104), the National Natural Science Foundation of China (Nos. 51671041 51531002 and U1764253) and Natural Science Foundation of Chongqing (cstc2017jcyjBX0040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangsheng Huang or Bin Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Huang, G., Huang, Y. et al. Achieving High Ductility in Hot-Rolled Mg-xZn-0.2Ca-0.2Ce Sheet by Zn Addition. JOM 72, 1607–1618 (2020). https://doi.org/10.1007/s11837-020-04038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04038-2

Navigation