Peeling in Biological and Bioinspired Adhesive Systems

Abstract

Biological adhesives have inspired synthetically manufactured adhesives with novel properties. Peeling-mode failure is critical to understand these systems and achieve optimal performance. The most common models to describe peeling are briefly reviewed, followed by a literature review of all biological adhesive systems in which peeling plays a critical role, including bioinspired synthetic implementations. From this review, two systems emerge as predominantly studied in this context: gecko feet and spider silk adhesives, both of which are discussed in detail. Gecko feet represent a nanostructured adhesive that has been widely studied because of its unique reversible adhesion and self-cleaning properties. Fibrous and permanent spider silk glues used in spider webs and anchors are interesting given their capacity to withstand hurricane winds and catch and store prey.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    A.V.P.D. Dillard, eds., Adhesion Science and Engineering: Surfaces, Chemistry and Applications (Annals of Discrete Mathematics) (Amsterdam: Elsevier, 2002).

    Google Scholar 

  2. 2.

    A.M. Smith, eds., Biological Adhesives (Berin: Springer, 2016).

    Google Scholar 

  3. 3.

    K.A. Daltorio, A.D. Horchler, S. Gorb, R.E. Ritzmann, and R.D. Quinn, in 2005 IEEERSJ International Conference on Intelligent and Robotic Systems (IEEE, 2005).

  4. 4.

    A. Asbeck, S. Dastoor, A. Parness, L. Fullerton, N. Esparza, D. Soto, B. Heyneman, and M. Cutkosky, in 2009 IEEE International Conference on Robotics and Automation (IEEE, 2009).

  5. 5.

    C. Menon, N. Lan, and D. Sameoto, Appl. Bionics Biomech. 6, 87 (2009).

    Google Scholar 

  6. 6.

    H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, and F.G. Omenetto, Adv. Mater. 22, 3527 (2010).

    Google Scholar 

  7. 7.

    Y. Wang, J. Guo, L. Zhou, C. Ye, F.G. Omenetto, D.L. Kaplan, and S. Ling, Adv. Funct. Mater. 28, 1805305 (2018).

    Google Scholar 

  8. 8.

    T. Siritientong, A. Angspatt, J. Ratanavaraporn, and P. Aramwit, Pharm. Res. 31, 104 (2013).

    Google Scholar 

  9. 9.

    P. Aramwit, J. Ratanavaraporn, and T. Siritientong, Adv. Skin Wound Care 28, 358 (2015).

    Google Scholar 

  10. 10.

    M.K. Kwak, H.-E. Jeong, and K.Y. Suh, Adv. Mater. 23, 3949 (2011).

    Google Scholar 

  11. 11.

    S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee, and C. Pang, Adv. Mater. 31, 1803309 (2019).

    Google Scholar 

  12. 12.

    V. Slesarenko, N. Kazarinov, and S. Rudykh, Smart Mater. Struct. 26, 035053 (2017).

    Google Scholar 

  13. 13.

    R. Yadav, R. Goud, A. Dutta, X. Wang, M. Naebe, and B. Kandasubramanian, Ind. Eng. Chem. Res. 57, 10832 (2018).

    Google Scholar 

  14. 14.

    Z. Qin, B.G. Compton, J.A. Lewis, and M.J. Buehler, Nat. Commun. 6, 7038 (2015).

    Google Scholar 

  15. 15.

    D.E. Packham, Handbook of Adhesion (Oxford: Wiley-Blackwell, 2005).

    Google Scholar 

  16. 16.

    K. Autumn and J. Puthoff, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 245–280.

  17. 17.

    K. Autumn, J. Exp. Biol. 209, 3569 (2006).

    Google Scholar 

  18. 18.

    N.S. Pesika, Y. Tian, B. Zhao, K. Rosenberg, H. Zeng, P. McGuiggan, K. Autumn, and J.N. Israelachvili, J. Adhes. 83, 383 (2007).

    Google Scholar 

  19. 19.

    N.N. Ashton, C.-S. Wang, and R.J. Stewart, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 107–128.

  20. 20.

    S. Das and A. Ghosh, Indian J. Fibre Text. Res. 34, 31 (2009).

    Google Scholar 

  21. 21.

    J.O. Wolff, M.E. Herberstein, and J.R. Soc, Interface 14, 20160783 (2017).

    Google Scholar 

  22. 22.

    Y. Liu, H. Meng, P.B. Messersmith, B.P. Lee, and J.L. Dalsin, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 345–378.

  23. 23.

    W. Yang, G.P. Zhang, X.F. Zhu, X.W. Li, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 1514 (2011).

    Google Scholar 

  24. 24.

    I. Scholz, W.J.P. Barnes, J.M. Smith, and W. Baumgartner, J. Exp. Biol. 212, 155 (2008).

    Google Scholar 

  25. 25.

    S.N. Gorb, M. Sinha, A. Peressadko, K.A. Daltorio, and R.D. Quinn, Bioinspir. Biomim. 2, S117 (2007).

    Google Scholar 

  26. 26.

    E. Arzt, S. Gorb, and R. Spolenak, Proc. Natl. Acad. Sci. 100, 10603 (2003).

    Google Scholar 

  27. 27.

    W. Federle, E.L. Brainerd, T.A. McMahon, and B. Holldobler, Proc. Natl. Acad. Sci. 98, 6215 (2001).

    Google Scholar 

  28. 28.

    C.J. Clemente and W. Federle, Proc. R. Soc. B Biol. Sci. 275, 1329 (2008).

    Google Scholar 

  29. 29.

    C. Pang, M.K. Kwak, C. Lee, H.E. Jeong, W.-G. Bae, and K.Y. Suh, Nano Today 7, 496 (2012).

    Google Scholar 

  30. 30.

    L. Frantsevich, A. Ji, Z. Dai, J. Wang, L. Frantsevich, and S.N. Gorb, J. Insect Physiol. 54, 818 (2008).

    Google Scholar 

  31. 31.

    P.N.B. Reis, J.A.M. Ferreira, and F. Antunes, Int. J. Adhes. Adhes. 31, 193 (2011).

    Google Scholar 

  32. 32.

    K. Kendall, J. Phys. Appl. Phys. 8, 1449 (1975).

    Google Scholar 

  33. 33.

    K.L. Mittal, Electrocompon. Sci. Technol. 3, 21 (1976).

    Google Scholar 

  34. 34.

    M.D. Thouless and Q.D. Yang, Int. J. Adhes. Adhes. 28, 176 (2008).

    Google Scholar 

  35. 35.

    J.A. Greenwood and J.B.P. Williamson, Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295, 300 (1966).

    Google Scholar 

  36. 36.

    L.F.M. da Silva, R.J.C. Carbas, G.W. Critchlow, M.A.V. Figueiredo, and K. Brown, Int. J. Adhes. Adhes. 29, 621 (2009).

    Google Scholar 

  37. 37.

    B.N.J. Persson and M. Scaraggi, J. Chem. Phys. 141, 124701 (2014).

    Google Scholar 

  38. 38.

    L. Brely, F. Bosia, and N.M. Pugno, Bioinspir. Biomim. 13, 026004 (2018).

    Google Scholar 

  39. 39.

    Z.L. Peng and S.H. Chen, Phys. Rev. E 83, 051915 (2011).

    Google Scholar 

  40. 40.

    N. Cañas, M. Kamperman, B. Völker, E. Kroner, R.M. McMeeking, and E. Arzt, Acta Biomater. 8, 282 (2012).

    Google Scholar 

  41. 41.

    Z. Peng and S. Chen, Int. J. Solids Struct. 60–61, 60 (2015).

    Google Scholar 

  42. 42.

    M. Varenberg, A. Peressadko, S. Gorb, and E. Arzt, Appl. Phys. Lett. 89, 121905 (2006).

    Google Scholar 

  43. 43.

    E.M. Moya-Sanz, I. Ivañez, and S.K. Garcia-Castillo, Int. J. Adhes. Adhes. 72, 23 (2017).

    Google Scholar 

  44. 44.

    J. Boss, V. Ganesh, and C. Lim, Compos. Struct. 62, 113 (2003).

    Google Scholar 

  45. 45.

    V.K. Ganesh and T.S. Choo, J. Compos. Mater. 36, 1757 (2002).

    Google Scholar 

  46. 46.

    S. Sun, M. Li, and A. Liu, Int. J. Adhes. Adhes. 41, 98 (2013).

    Google Scholar 

  47. 47.

    Z. Peng and S. Chen, Phys. Rev. E 91, 042401 (2015).

    Google Scholar 

  48. 48.

    Z. Peng and S. Chen, Appl. Phys. Lett. 101, 163702 (2012).

    Google Scholar 

  49. 49.

    B.N.J. Persson, J. Chem. Phys. 118, 7614 (2003).

    Google Scholar 

  50. 50.

    Z. Peng, C. Wang, Y. Yang, and S. Chen, Phys. Rev. E 94, 10 (2016).

    Google Scholar 

  51. 51.

    Z. Peng and S. Chen, Colloids Surf. B Biointerfaces 88, 717 (2011).

    Google Scholar 

  52. 52.

    Z.L. Peng, C. Wang, and S.H. Chen, Colloids Surf. B Biointerfaces 122, 662 (2014).

    Google Scholar 

  53. 53.

    Z. Peng, Y. Yang, and S. Chen, J. Phys. Appl. Phys. 50, 315402 (2017).

    Google Scholar 

  54. 54.

    A. Aggarwal, S. Ramakrishna, and V.K. Ganesh, J. Compos. Mater. 35, 665 (2001).

    Google Scholar 

  55. 55.

    C. Ayranci and J. Carey, Compos. Struct. 85, 43 (2008).

    Google Scholar 

  56. 56.

    J. Tate, A. Kelkar, and J. Whitcomb, Int. J. Fatigue 28, 1239 (2006).

    Google Scholar 

  57. 57.

    J. Chopin, R. Villey, D. Yarusso, E. Barthel, C. Creton, and M. Ciccotti, Macromolecules 51, 8605 (2018).

    Google Scholar 

  58. 58.

    F. Sosson, A. Chateauminois, and C. Creton, J. Polym. Sci. B Polym. Phys. 43, 3316 (2005).

    Google Scholar 

  59. 59.

    S.E. Naleway, M.M. Porter, J. McKittrick, and M.A. Meyers, Adv. Mater. 27, 5455 (2015).

    Google Scholar 

  60. 60.

    S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, and J.R. Soc, Interface 4, 271 (2006).

    Google Scholar 

  61. 61.

    D. Brodoceanu, C.T. Bauer, E. Kroner, E. Arzt, and T. Kraus, Bioinspir. Biomim. 11, 051001 (2016).

    Google Scholar 

  62. 62.

    Z.L. Peng, S.H. Chen, and A.K. Soh, Int. J. Solids Struct. 47, 1952 (2010).

    Google Scholar 

  63. 63.

    S.R. Koebley, F. Vollrath, and H.C. Schniepp, Mater. Horiz. 4, 377 (2017).

    Google Scholar 

  64. 64.

    A. Meyer, N.M. Pugno, S.W. Cranford, and J.R. Soc, Interface 11, 20140561 (2014).

    Google Scholar 

  65. 65.

    N.M. Pugno, S.W. Cranford, and M.J. Buehler, Small 9, 2747 (2013).

    Google Scholar 

  66. 66.

    P.H. Niewiarowski, A.Y. Stark, and A. Dhinojwala, J. Exp. Biol. 219, 912 (2016).

    Google Scholar 

  67. 67.

    N.N. Ashton, D.S. Taggart, and R.J. Stewart, Biopolymers 97, 432 (2011).

    Google Scholar 

  68. 68.

    S.N. Gorb, Am. Entomol. 51, 31 (2005).

    Google Scholar 

  69. 69.

    Z. Yin, A. Dastjerdi, and F. Barthelat, Acta Biomater. 75, 439 (2018).

    Google Scholar 

  70. 70.

    Z. Peng, C. Wang, L. Chen, and S. Chen, Int. J. Solids Struct. 51, 4596 (2014).

    Google Scholar 

  71. 71.

    L. He, J. Lou, S. Kitipornchai, J. Yang, and J. Du, Int. J. Solids Struct. 167, 184 (2019).

    Google Scholar 

  72. 72.

    D. Jain, T.A. Blackledge, T. Miyoshi, and A. Dhinojwala, Biological Adhesives, ed. A.M. Smith, 2nd ed. (Berlin: Springer, 2016), pp. 303–319.

  73. 73.

    Z. Gu, S. Li, F. Zhang, and S. Wang, Adv. Sci. 3, 1500327 (2016).

    Google Scholar 

  74. 74.

    K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, and R.J. Full, Nature 405, 681 (2000).

    Google Scholar 

  75. 75.

    G. Huber, S.N. Gorb, R. Spolenak, and E. Arzt, Biol. Lett. 1, 2 (2005).

    Google Scholar 

  76. 76.

    G. Greco, M.F. Pantano, B. Mazzolai, and N.M. Pugno, Sci. Rep. 9, 5776 (2019).

    Google Scholar 

  77. 77.

    G. Amarpuri, C. Zhang, C. Diaz, B.D. Opell, T.A. Blackledge, and A. Dhinojwala, ACS Nano 9, 11472 (2015).

    Google Scholar 

  78. 78.

    Y. Bouligand, Tissue Cell 4, 189 (1972).

    Google Scholar 

  79. 79.

    A. Bigi, M. Burghammer, R. Falconi, M.H.J. Koch, S. Panzavolta, and C. Riekel, J. Struct. Biol. 136, 137 (2001).

    Google Scholar 

  80. 80.

    E.A. Zimmermann, B. Gludovatz, E. Schaible, N.K.N. Dave, W. Yang, M.A. Meyers, and R.O. Ritchie, Nat. Commun. 4, 2634 (2013).

    Google Scholar 

  81. 81.

    H. Hertz, J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

  82. 82.

    M.S. Stanislav and S.N. Gorb, Biological Micro- and Nanotribology (Berlin: Springer, 2001).

    Google Scholar 

  83. 83.

    K.L. Johnson, K. Kendall, and A.D. Roberts, Proc. R. Soc. Math. Phys. Eng. Sci. 324, 301 (1971).

    Google Scholar 

  84. 84.

    B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).

    Google Scholar 

  85. 85.

    V.M. Muller, V.S. Yushchenko, and B.V. Derjaguin, J. Colloid Interface Sci. 77, 91 (1980).

    Google Scholar 

  86. 86.

    R. Spolenak, S. Gorb, H. Gao, and E. Arzt, Proc. R. Soc. Math. Phys. Eng. Sci. 461, 305 (2005).

    Google Scholar 

  87. 87.

    D.H. Kaelble, J. Adhes. 37, 205 (1992).

    Google Scholar 

  88. 88.

    M. Ciccotti, B. Giorgini, D. Vallet, and M. Barquins, Int. J. Adhes. Adhes. 24, 143 (2004).

    Google Scholar 

  89. 89.

    N.M. Pugno, Int. J. Fract. 171, 185 (2011).

    Google Scholar 

  90. 90.

    L. Brely, F. Bosia, S. Palumbo, M. Fraldi, A. Dhinojwala, N.M. Pugno, and J.R. Soc, Interface 16, 20190388 (2019).

    Google Scholar 

  91. 91.

    T. Tang, C.-Y. Hui, N.J. Glassmaker, and J.R. Soc, Interface 2, 505 (2005).

    Google Scholar 

  92. 92.

    A. Jagota and S.J. Bennison, Integr. Comp. Biol. 42, 1140 (2002).

    Google Scholar 

  93. 93.

    K. Autumn, Integr. Comp. Biol. 42, 1081 (2002).

    Google Scholar 

  94. 94.

    B.N.J. Persson and S. Gorb, J. Chem. Phys. 119, 11437 (2003).

    Google Scholar 

  95. 95.

    L. Afferrante, G. Carbone, G. Demelio, and N. Pugno, Tribol. Lett. 52, 439 (2013).

    Google Scholar 

  96. 96.

    M.R. Begley, R.R. Collino, J.N. Israelachvili, and R.M. McMeeking, J. Mech. Phys. Solids 61, 1265 (2013).

    MathSciNet  Google Scholar 

  97. 97.

    J.A. Williams and J.J. Kauzlarich, Tribol. Int. 38, 951 (2005).

    Google Scholar 

  98. 98.

    M. Zhou, Y. Tian, N. Pesika, H. Zeng, J. Wan, Y. Meng, and S. Wen, J. Adhes. 87, 1045 (2011).

    Google Scholar 

  99. 99.

    C. Derail, A. Allal, G. Marin, and P. Tordjeman, J. Adhes. 61, 123 (1997).

    Google Scholar 

  100. 100.

    Y. Tian, N. Pesika, H. Zeng, K. Rosenberg, B. Zhao, P. McGuiggan, K. Autumn, and J. Israelachvili, Proc. Natl. Acad. Sci. 103, 19320 (2006).

    Google Scholar 

  101. 101.

    G. Huber, S. Gorb, N. Hosoda, R. Spolenak, and E. Arzt, Acta Biomater. 3, 607 (2007).

    Google Scholar 

  102. 102.

    A.N. Gent and R.P. Petrich, Proc. R. Soc. Math. Phys. Eng. Sci. 310, 433 (1969).

    Google Scholar 

  103. 103.

    A.N. Gent and A.J. Kinloch, J. Polym. Sci. Part-2 Polym. Phys. 9, 659 (1971).

    Google Scholar 

  104. 104.

    K. Autumn, J. Exp. Biol. 209, 260 (2006).

    Google Scholar 

  105. 105.

    G. Haiat and E. Barthel, Langmuir 23, 11643 (2007).

    Google Scholar 

  106. 106.

    A.Y. Stark and C.T. Mitchell, Integr. Comp. Biol. 59, 214 (2019).

    Google Scholar 

  107. 107.

    K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, and R.J. Full, Proc. Natl. Acad. Sci. 99, 12252 (2002).

    Google Scholar 

  108. 108.

    M.P. Murphy, S. Kim, M. Sitti, and A.C.S. Appl, Mater. Interfaces 1, 849 (2009).

    Google Scholar 

  109. 109.

    J.O. Wolff and S.N. Gorb, Attach. Struct. Adhes. Secret. Arachn. 7, 79 (2016).

    Google Scholar 

  110. 110.

    L. Ge, S. Sethi, L. Ci, P.M. Ajayan, and A. Dhinojwala, Proc. Natl. Acad. Sci. 104, 10792 (2007).

    Google Scholar 

  111. 111.

    H. Lee, B.P. Lee, and P.B. Messersmith, Nature 448, 338 (2007).

    Google Scholar 

  112. 112.

    Y. Mengüç, S.Y. Yang, S. Kim, J.A. Rogers, and M. Sitti, Adv. Funct. Mater. 22, 1246 (2012).

    Google Scholar 

  113. 113.

    B. Soltannia, D. Sameoto, and A.C.S. Appl, Mater. Interfaces 6, 21995 (2014).

    Google Scholar 

  114. 114.

    H. Yi, S.H. Lee, M. Seong, M.K. Kwak, and H.E. Jeong, J. Mater. Chem. B 6, 8064 (2018).

    Google Scholar 

  115. 115.

    J. Lee and R.S. Fearing, Langmuir 24, 10587 (2008).

    Google Scholar 

  116. 116.

    V. Alizadehyazdi, A. Simaite, M. Spenko, and A.C.S. Appl, Mater. Interfaces 11, 8654 (2019).

    Google Scholar 

  117. 117.

    Z. Yan, F. Zhang, J. Wang, F. Liu, X. Guo, K. Nan, Q. Lin, M. Gao, D. Xiao, Y. Shi, Y. Qiu, H. Luan, J.H. Kim, Y. Wang, H. Luo, M. Han, Y. Huang, Y. Zhang, and J.A. Rogers, Adv. Funct. Mater. 26, 2629 (2016).

    Google Scholar 

  118. 118.

    H.C. Schniepp, S.R. Koebley, and F. Vollrath, Adv. Mater. 25, 7028 (2013).

    Google Scholar 

  119. 119.

    F.G. Omenetto and D.L. Kaplan, Science 329, 528 (2010).

    Google Scholar 

  120. 120.

    F. Chen, D. Porter, and F. Vollrath, Acta Biomater. 8, 2620 (2012).

    Google Scholar 

  121. 121.

    J. Zhang, J. Kaur, R. Rajkhowa, J.L. Li, X.Y. Liu, and X.G. Wang, Mater. Sci. Eng. C 33, 3206 (2013).

    Google Scholar 

  122. 122.

    Q. Wang and H.C. Schniepp, ACS Macro Lett. 7, 1364 (2018).

    Google Scholar 

  123. 123.

    S. Roh, A.H. Williams, R.S. Bang, S.D. Stoyanov, and O.D. Velev, Nat. Mater. 18, 1315 (2019).

    Google Scholar 

  124. 124.

    B.D. Opell and M.L. Hendricks, J. Exp. Biol. 210, 553 (2007).

    Google Scholar 

  125. 125.

    B.D. Opell, S.E. Karinshak, and M.A. Sigler, J. Exp. Biol. 216, 3023 (2013).

    Google Scholar 

  126. 126.

    V. Sahni, T.A. Blackledge, and A. Dhinojwala, Nat. Commun. 1, 19 (2010).

    Google Scholar 

  127. 127.

    D. Jain, C. Zhang, L.R. Cool, T.A. Blackledge, C. Wesdemiotis, T. Miyoshi, and A. Dhinojwala, Biomacromol 16, 3373 (2015).

    Google Scholar 

  128. 128.

    V. Sahni, J. Harris, T.A. Blackledge, and A. Dhinojwala, Nat. Commun. 3, 1106 (2012).

    Google Scholar 

  129. 129.

    Y. Guo, Z. Chang, B. Li, Z.-L. Zhao, H.-P. Zhao, X.-Q. Feng, and H. Gao, Appl. Phys. Lett. 113, 103701 (2018).

    Google Scholar 

  130. 130.

    A.O. Krushynska, F. Bosia, M. Miniaci, and N.M. Pugno, New J. Phys. 19, 105001 (2017).

    Google Scholar 

  131. 131.

    M. Miniaci, A. Krushynska, A.B. Movchan, F. Bosia, and N.M. Pugno, Appl. Phys. Lett. 109, 071905 (2016).

    Google Scholar 

  132. 132.

    E. Blasingame, T. Tuton-Blasingame, L. Larkin, A.M. Falick, L. Zhao, J. Fong, V. Vaidyanathan, A. Visperas, P. Geurts, X. Hu, C.L. Mattina, and C. Vierra, J. Biol. Chem. 284, 29097 (2009).

    Google Scholar 

  133. 133.

    K. Singha, S. Maity, and M. Singha, Front. Sci. 2, 92 (2012).

    Google Scholar 

  134. 134.

    I. Özdemir, Acta Mech. 228, 1735 (2017).

    MathSciNet  Google Scholar 

  135. 135.

    L. Heepe, D.S. Petersen, L. Tölle, J.O. Wolff, and S.N. Gorb, Bio-inspired Structured Adhesives (Berlin: Springer, 2017), pp. 47–61.

    Google Scholar 

  136. 136.

    J.O. Wolff and S.N. Gorb, Bio-inspired Systems (Berlin: Springer, 2016), pp. 87–93.

    Google Scholar 

  137. 137.

    D.W. Kim, S. Baik, H. Min, S. Chun, H.J. Lee, K.H. Kim, J.Y. Lee, and C. Pang, Adv. Funct. Mater. 29, 1807614 (2019).

    Google Scholar 

  138. 138.

    F. Meng, Q. Liu, X. Wang, D. Tan, L. Xue, and W.J.P. Barnes, Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 377, 20190131 (2019).

    Google Scholar 

  139. 139.

    A.K. Dastjerdi and F. Barthelat, J. Mech. Behav. Biomed. Mater. 52, 95 (2015).

    Google Scholar 

  140. 140.

    Y.S. Lin, C.T. Wei, E.A. Olevsky, and M.A. Meyers, J. Mech. Behav. Biomed. Mater. 4, 1145 (2011).

    Google Scholar 

  141. 141.

    L.K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S.R. Nutt, P. Zavattieri, and D. Kisailus, Acta Biomater. 10, 3997 (2014).

    Google Scholar 

  142. 142.

    N. Suksangpanya, N.A. Yaraghi, D. Kisailus, and P. Zavattieri, J. Mech. Behav. Biomed. Mater. 76, 38 (2017).

    Google Scholar 

  143. 143.

    M. Cai, A.J. Glover, T.J. Wallin, D.E. Kranbuehl, and H.C. Schniepp, AIP Conf. Proc. 1255, 95 (2010).

    Google Scholar 

  144. 144.

    L.R. Dickinson, D.E. Kranbuehl, and H.C. Schniepp, Surf. Innov. 4, 158 (2016).

    Google Scholar 

  145. 145.

    D.E. Kranbuehl, M. Cai, A.J. Glover, and H.C. Schniepp, J. Appl. Polym. Sci. 122, 3739 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was made possible by funding through the National Science Foundation under Grants Nos. DMR-1352542 and DMR-1905902. The authors would like to acknowledge the large amount of constructive feedback obtained from the reviewers during the reviewing stage of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hannes C. Schniepp.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skopic, B.H., Schniepp, H.C. Peeling in Biological and Bioinspired Adhesive Systems. JOM 72, 1509–1522 (2020). https://doi.org/10.1007/s11837-020-04037-3

Download citation