Skip to main content
Log in

The Character of Hydrogen Embrittlement in Mooring Chain Steel

  • Hydrogen Effects on Material Performance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The digital image correlation method has been applied to directly observe the local strain and crack formation in mooring chain steel during tensile tests in air or when simultaneously charging hydrogen in different ways, viz. including/excluding the notch root. Interestingly, hydrogen accumulation promoted crack initiation on the surface when the local strain reached approximately 0.9%, while strain of 19% to 20% was reached in the hydrogen-free specimens before visible crack formation. Even through the stress–strain curves prior to the sudden drop indicate a negligible effect of hydrogen, its presence can greatly reduce the stress-induced crack initiation. In addition, hydrogen introduced while avoiding the notch root can disorganize the regular distribution of strain produced by the notch before crack initiation. Therefore, hydrogen-induced embrittlement below the critical stress criterion can be explained by hydrogen-enhanced localized plasticity, while above the critical stress criterion, hydrogen-enhanced decohesion provides a better explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.Y. Cheng, H.X. Zhang, H. Li, and H.P. Shen, Mater. Sci. Eng. A 636, 164 (2015). https://doi.org/10.1016/j.msea.2015.03.102.

    Article  Google Scholar 

  2. G. Stenerud, S. Wenner, J.S. Olsen, and R. Johnsen, Int. J. Hydrog. Energy 43, 6765 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.088.

    Article  Google Scholar 

  3. Y. Li, B. Gong, X. Li, C. Deng, and D. Wang, Int. J. Hydrogen Energy 43, 15575 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.118.

    Article  Google Scholar 

  4. X.Y. Cheng, X.Y. Zhang, and H.X. Zhang, Mater. Sci. Eng. A 730, 295 (2018). https://doi.org/10.1016/j.msea.2018.06.001.

    Article  Google Scholar 

  5. M. Nakatani, H. Fujihara, M. Sakihara, and K.M. Inoshima, Mater. Sci. Eng. A 528, 7729 (2011). https://doi.org/10.1016/j.msea.2011.07.003.

    Article  Google Scholar 

  6. A.R. Troiano, Metall. Microstruct. Anal. 5, 557 (2016). https://doi.org/10.1007/s13632-016-0319-4.

    Article  Google Scholar 

  7. R.A. Oriani and P.H. Josephic, Acta Metall. 22, 1065 (1974). https://doi.org/10.1016/0001-6160(74)90061-3.

    Article  Google Scholar 

  8. C. Ayas, V.S. Deshpande, and N.A. Fleck, J. Mech. Phys. Solids 63, 80 (2014). https://doi.org/10.1016/j.jmps.2013.10.002.

    Article  Google Scholar 

  9. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994). https://doi.org/10.1016/0921-5093(94)90975-x.

    Article  Google Scholar 

  10. C.D. Beachem, Metall. Mater. Trans. B 3, 437 (1972). https://doi.org/10.1007/bf02642048.

    Article  Google Scholar 

  11. I.M. Robertson, Eng. Fract. Mech. 65, 649 (1999). https://doi.org/10.1016/s0013-7944(99)00094-6.

    Article  Google Scholar 

  12. S. Wang, M.L. Martin, P. Sofronis, S. Ohnukie, N. Hashimoto, and I.M. Robertson, Acta Mater. 69, 275 (2014). https://doi.org/10.1016/j.actamat.2014.01.060.

    Article  Google Scholar 

  13. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis, Acta Mater. 165, 734 (2019). https://doi.org/10.1016/j.actamat.2018.12.014.

    Article  Google Scholar 

  14. D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Acta Metall. 36, 111 (1988). https://doi.org/10.1016/0001-6160(88)90032-6.

    Article  Google Scholar 

  15. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008). https://doi.org/10.1016/j.actamat.2008.06.031.

    Article  Google Scholar 

  16. M. Hattori, H. Suzuki, Y. Seko, and K. Takai, JOM 69, 1375 (2017). https://doi.org/10.1007/s11837-017-2371-1.

    Article  Google Scholar 

  17. M. Nagumo and K. Takai, Acta Mater. 165, 722 (2019). https://doi.org/10.1016/j.actamat.2018.12.013.

    Article  Google Scholar 

  18. S.P. Lynch, Acta Metall. 36, 2639 (1988). https://doi.org/10.1016/0001-6160(88)90113-7.

    Article  Google Scholar 

  19. S. Gahr, M.L. Grossbeck, and H.K. Birnbaum, Acta Metall. 25, 125 (1977). https://doi.org/10.1016/0001-6160(77)90116-x.

    Article  Google Scholar 

  20. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe, Acta Mater. 70, 174 (2014). https://doi.org/10.1016/j.actamat.2014.01.048.

    Article  Google Scholar 

  21. P. Novak, R. Yuan, B. Somerday, P. Sofronis, and R. Ritchie, J. Mech. Phys. Solids 58, 206 (2010). https://doi.org/10.1016/j.jmps.2009.10.005.

    Article  Google Scholar 

  22. M.-Q. Wang, E. Akiyama, and K. Tsuzaki, Mater. Sci. Technol. 22, 167 (2006). https://doi.org/10.1179/174328406x86191.

    Article  Google Scholar 

  23. M. Wang, E. Akiyama, and K. Tsuzaki, Mater. Sci. Eng. A 398, 37 (2005). https://doi.org/10.1016/j.msea.2005.03.008.

    Article  Google Scholar 

  24. M. Wang, E. Akiyama, and K. Tsuzaki, Corros. Sci. 49, 4081 (2007). https://doi.org/10.1016/j.corsci.2007.03.038.

    Article  Google Scholar 

  25. D.C. Ahn, P. Sofronis, and R. Dodds Jr., Int. J. Fract. 145, 135 (2007). https://doi.org/10.1007/s10704-007-9112-3.

    Article  Google Scholar 

  26. T. Tabata and H.K. Birnbaum, Scr. Met. 17, 947 (1983). https://doi.org/10.1016/0036-9748(83)90268-5.

    Article  Google Scholar 

  27. T. Tabata and H.K. Birnbaum, Scr. Met. 18, 231 (1984). https://doi.org/10.1016/0036-9748(84)90513-1.

    Article  Google Scholar 

  28. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 46, 1749 (1998). https://doi.org/10.1016/s1359-6454(97)00349-2.

    Article  Google Scholar 

  29. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum, Acta Mater. 47, 2991 (1999). https://doi.org/10.1016/s1359-6454(99)00156-1.

    Article  Google Scholar 

  30. J. Venezuela, Q. Liu, M. Zhang, Q. Zhou, and A. Atrens, Corros. Sci. 99, 98 (2015). https://doi.org/10.1016/j.corsci.2015.06.038.

    Article  Google Scholar 

  31. J.H. Kim, J.H. Sung, D.K. Matlock, D. Kim, and R.H. Wagoner, Int. J. Mater. Form. 3, 187 (2010). https://doi.org/10.1007/s12289-010-0738-8.

    Article  Google Scholar 

  32. A. Barnoush and H. Vehoff, Acta Mater. 58, 5274 (2010). https://doi.org/10.1016/j.actamat.2010.05.057.

    Article  Google Scholar 

  33. L. Anand, Y. Mao, and B. Talamini, J. Mech. Phys. Solids 122, 280 (2019). https://doi.org/10.1016/j.jmps.2018.09.012.

    Article  MathSciNet  Google Scholar 

  34. J. Song and W.A. Curtin, Acta Mater. 68, 61 (2014). https://doi.org/10.1016/j.actamat.2014.01.008.

    Article  Google Scholar 

  35. Y. Liang, D.G. Ahn, P. Sofronis, R.H. Dodds, and D. Bammann, Mech. Mater. 40, 115 (2008). https://doi.org/10.1016/j.mechmat.2007.07.001.

    Article  Google Scholar 

  36. M. Štamborská, J. Lapin, O. Bajana, and M. Losertova, Kovove Mater. 53, 399 (2015). https://doi.org/10.4149/km_2015_6_399.

    Article  Google Scholar 

  37. M. Štamborská, J. Lapin, and O. Bajana, Kovove Mater. 54, 397 (2016). https://doi.org/10.4149/km_2016_6_397.

    Article  Google Scholar 

  38. H.J. Maier, W. Popp, and H. Kaesche, Acta Metall. 35, 875 (1987). https://doi.org/10.1016/0001-6160(87)90164-7.

    Article  Google Scholar 

  39. J. Song and W.A. Curtin, Acta Mater. 59, 1557 (2011). https://doi.org/10.1016/j.actamat.2010.11.019.

    Article  Google Scholar 

  40. J. Song and W.A. Curtin, Nat. Mater. 12, 145 (2013). https://doi.org/10.1038/nmat3479.

    Article  Google Scholar 

  41. D. Jiang and E.A. Carter, Acta Mater. 52, 4801 (2004). https://doi.org/10.1016/j.actamat.2004.06.037.

    Article  Google Scholar 

  42. R.A. Oriani, Acta Metall. 18, 147 (1970). https://doi.org/10.1016/0001-6160(70)90078-7.

    Article  Google Scholar 

  43. S.P. Lynch, Metall. Mater. Trans. 44A, 1209 (2013). https://doi.org/10.1007/s11661-012-1359-2.

    Article  Google Scholar 

  44. H.K. Birnbaum, Scr. Metall. Mater. 31, 149 (1994). https://doi.org/10.1016/0956-716x(94)90166-x.

    Article  Google Scholar 

  45. L. Briottet, I. Moro, and P. Lemoine, Int. J. Hydrog. Energy 37, 17616 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.143.

    Article  Google Scholar 

  46. P.G. Marsh and W.W. Gerberich, Acta Metall. Mater. 42, 613 (1994). https://doi.org/10.1016/0956-7151(94)90257-7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 51271108 and 51871145) and the Shanghai Natural Science Foundation (11ZR1412800). The authors would like to thank Prof. Yin Jiang (Jiangsu Asian Star Anchor Chain Co. Ltd.) for providing us the new-type R5 mooring chain steel, which we studied in this work. In addition, we would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhang, X., Wu, Y. et al. The Character of Hydrogen Embrittlement in Mooring Chain Steel. JOM 72, 2003–2010 (2020). https://doi.org/10.1007/s11837-020-04022-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04022-w

Navigation