Skip to main content
Log in

Three-Dimensional Laser Engraving for Fabrication of Tough Glass-Based Bioinspired Materials

  • Advanced Manufacturing for Biomaterials and Biological Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Glass has many attractive properties including transparency, durability, low electrical conductivity, and corrosion resistance, but its brittleness still limits the range of its applications. Three-dimensional laser engraving has been explored to generate three-dimensional (3D) networks of weak interfaces within the bulk of glass. These interfaces deflect cracks and dissipate energy by friction, with mechanisms that are similar to fracture in mollusk shells or teeth. Confocal microscopy was used to characterize the morphology of laser-induced microcracks in borosilicate glass and ceramic glass, and the effective toughness of laser-engraved interfaces was measured. The effect of microcrack spacing on interface morphology, damage parameter, fracture surface, and fracture toughness was explored. Architectured borosilicate glass panels based on a simple grid pattern were then fabricated. These all-brittle panels do not require mechanical confinement and can absorb significantly more impact energy than monolithic glass provided that the interface toughness is tuned properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.E. Shelby and M. Lopes, Introduction to Glass Science and Technology, 2nd ed. (Cambridge: Royal Society of Chemistry, 2005).

    Google Scholar 

  2. A.K. Varshneya, Fundamentals of Inorganic Glasses (New York: Gulf Professional, 1994).

    Google Scholar 

  3. L. Wondraczek, J.C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, and T. Rouxel, Adv. Mater. 23, 4578 (2011).

    Google Scholar 

  4. F. Petit, A.C. Sartieaux, M. Gonon, and F. Cambier, Acta Mater. 55, 2765 (2007).

    Google Scholar 

  5. H.S. Norville, W. King Kim, and L. Swofford Jason, J. Eng. Mech. 124, 46 (1998).

    Google Scholar 

  6. M.F. Ashby, Philos. Mag. 85, 3235 (2005).

    Google Scholar 

  7. M.F. Ashby, Materials Selection in Mechanical Design, 5th ed. (Cambridge, MA: Butterworth-Heinemann, 2016).

    Google Scholar 

  8. O. Bouaziz, Y. Bréchet, and J.D. Embury, Adv. Eng. Mater. 10, 24 (2008).

    Google Scholar 

  9. V.V. Krstic, P.S. Nicholson, and R.G. Hoagland, J. Am. Ceram. Soc. 64, 499 (1981).

    Google Scholar 

  10. H. Huang, H. Ke, P. Zhang, Z. Pu, D. Zou, P. Zhang, T. Shi, L. Zhang, and T. Liu, Mater. Des. 157, 371 (2018).

    Google Scholar 

  11. F. Barthelat, Int. Mater. Rev. 60, 413 (2015).

    Google Scholar 

  12. A.S. Dalaq and F. Barthelat, Int. J. Solids Struct. 171, 146 (2019).

    Google Scholar 

  13. D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and I. Jasiuk, Compos. Struct. 133, 85 (2015).

    Google Scholar 

  14. A.S. Dalaq, D.W. Abueidda, and R.K. Abu Al-Rub, Compos. Part A Appl. Sci. Manuf. 84, 266 (2016).

    Google Scholar 

  15. J. Song, W. Zhou, Y. Wang, R. Fan, Y. Wang, J. Chen, Y. Lu, and L. Li, Mater. Des. 173, 107773 (2019).

    Google Scholar 

  16. M. Mirkhalaf, T. Zhou, and F. Barthelat, PNAS 115, 9128 (2018).

    Google Scholar 

  17. H. Yazdani Sarvestani, M. Mirkhalaf, A.H. Akbarzadeh, D. Backman, M. Genest, and B. Ashrafi, Mater. Des. 167, 107627 (2019).

    Google Scholar 

  18. F. Barthelat, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2907 (2007).

    MathSciNet  Google Scholar 

  19. P. Fratzl, O. Kolednik, F.D. Fischer, and M.N. Dean, Chem. Soc. Rev. 45, 252 (2016).

    Google Scholar 

  20. N. Abid, M. Mirkhalaf, and F. Barthelat, J. Mech. Phys. Solids 112, 385 (2018).

    Google Scholar 

  21. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, and I.A. Aksay, J. Mater. Res. 16, 2485 (2001).

    Google Scholar 

  22. F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, and H.D. Espinosa, J. Mech. Phys. Solids 55, 306 (2007).

    Google Scholar 

  23. N. Abid, J.W. Pro, and F. Barthelat, J. Mech. Phys. Solids 124, 350 (2019).

    Google Scholar 

  24. H. Zhu, H. Cao, X. Liu, M. Wang, X. Meng, Q. Zhou, and L. Xu, Mater. Des. 175, 107783 (2019).

    Google Scholar 

  25. Z. Yin, F. Hannard, and F. Barthelat, Science 364, 1260 (2019).

    Google Scholar 

  26. T. Magrini, F. Bouville, A. Lauria, H.L. Ferrand, T.P. Niebel, and A.R. Studart, Nat. Commun. 10, 2794 (2019).

    Google Scholar 

  27. B.E. Flammang, S. Alben, P.G.A. Madden, and G.V. Lauder, J. Morph. 274, 1044 (2013).

    Google Scholar 

  28. M.E. Porter, R.H. Ewoldt, and J.H. Long, J. Exp. Biol. 219, 2908 (2016).

    Google Scholar 

  29. E.L. Troxell, GSA Bull. 36, 605 (1925).

    Google Scholar 

  30. A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Adv. Eng. Mater. 3, 885 (2001).

    Google Scholar 

  31. A.V. Dyskin, Y. Estrin, A.J. Kanel-Belov, and E. Pasternak, Philos. Mag. Lett. 83, 197 (2003).

    Google Scholar 

  32. Y. Feng, T. Siegmund, E. Habtour, and J. Riddick, Int. J. Impact Eng. 75, 140 (2015).

    Google Scholar 

  33. T. Siegmund, F. Barthelat, R. Cipra, E. Habtour, and J. Riddick, Appl. Mech. Rev. 68, 040803 (2016).

    Google Scholar 

  34. M. Mirkhalaf, A. Sunesara, B. Ashrafi, and F. Barthelat, Int. J. Solids Struct. 158, 52 (2019).

    Google Scholar 

  35. M.G. August. Pearl coating built from the ground up (Chemistry World, 2019), https://www.chemistryworld.com/news/pearl-coating-built-from-the-ground-up/1017294.article.

  36. M. Mirkhalaf, J. Tanguay, and F. Barthelat, Extreme Mech. Lett. 7, 104 (2016).

    Google Scholar 

  37. Z. Yin, A. Dastjerdi, and F. Barthelat, Acta Biomater. 75, 439 (2018).

    Google Scholar 

  38. V. Rastogi, S. Chaurasia, and D.S. Munda, J. Non-Crystall. Solids 463, 138 (2017).

    Google Scholar 

  39. X. Zeng, X.L. Mao, R. Greif, and R.E. Russo, Appl. Phys. A 80, 237 (2005).

    Google Scholar 

  40. B.T. Do, M. Kimmel, M. Pack, R. Schmitt, and A.V. Smith, SPIE Proc. Conf. Laser-Induced Damage in Optical Materials, 853008 (2012).

  41. K. Sugioka and Y. Cheng, Light Sci. Appl. 3, e149 (2014).

    Google Scholar 

  42. B. Wu and Y.C. Shin, J. Appl. Phys. 99, 084310 (2006).

    Google Scholar 

  43. V. Rastogi, S. Chaurasia, and D.S. Munda, arXiv:1601.03146[physics], (2016).

  44. W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (New York: Springer, 2006).

    Google Scholar 

  45. B. Karmakar, Functional Glasses and Glass-Ceramics: Processing, Properties and Applications (Cambridge, MA: Butterworth-Heinemann, 2017).

    Google Scholar 

  46. M. Mirkhalaf, A.K. Dastjerdi, and F. Barthelat, Nat. Commun. 5, 3166 (2014).

    Google Scholar 

  47. W.M. Steen and J. Mazumder, Basic Laser Optics (London: Springer, 2010).

    Google Scholar 

  48. P. Neerad, M. Sumit, S. Ashish, and J. Madhuri, in 2011 International Conference on Communications and Signal Processing, vol. 218 (2011).

  49. ASTM International. Test Method for Measurement of Fracture Toughness (ASTM e-1820). E-1820-01 ed. (USA: ASTM International, 2004).

  50. G.D. Quinn, Fractography of Ceramics and Glasses (Gaithersburg, Md: National Institute of Standards and Technology, 2007).

    Google Scholar 

  51. T.L. Anderson and T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 3rd ed. (New York: CRC, 2005).

    MATH  Google Scholar 

  52. H. Lekesiz, N. Katsube, S.I. Rokhlin, and R.R. Seghi, Int. J. Solids Struct. 50, 186 (2013).

    Google Scholar 

  53. H. Tada, P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook. 3 ed. (Three Park Avenue New York, 2000).

  54. C.Y. Dong and K.Y. Lee, Int. J. Fract. 133, 389 (2005).

    Google Scholar 

  55. H. Jelitto and G.A. Schneider, Acta Mater. 151, 443 (2018).

    Google Scholar 

  56. A.S. Wagh, J.P. Singh, and R.B. Poeppel, J. Mater. Sci. 28, 3589 (1993).

    Google Scholar 

  57. B.D. Flinn, R.K. Bordia, A. Zimmermann, and J. Rödel, J. Eur. Ceram. Soc. 20, 2561 (2000).

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Allen J. Ehrlicher (bioengineering department, McGill) for providing access and training for the confocal microscope facility at his laboratory. This work was supported by a Strategic Grant (STPGP 479137-5) from the Natural Sciences and Engineering Research Council of Canada and by a Team Grant (191270) from the Fonds de Recherche du Québec – Nature et Technologies. A.D. was partially supported by a McGill Engineering Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Barthelat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 8066 kb)

Supplementary material 2 (MP4 7358 kb)

Supplementary material 3 (MP4 4475 kb)

Supplementary material 4 (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalaq, A.S., Barthelat, F. Three-Dimensional Laser Engraving for Fabrication of Tough Glass-Based Bioinspired Materials. JOM 72, 1487–1497 (2020). https://doi.org/10.1007/s11837-019-04001-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-04001-w

Navigation