Skip to main content
Log in

Microscale Analysis of Melt Pool Dynamics Due To Particle Impingement and Laser-Matter Interaction in the Spot Laser Metal Deposition Process

  • Additive Manufacturing: Validation and Control
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ observation of the melt pool in the laser metal deposition process reveals the highly unstable and dynamical nature of the free surface due to impinging particles. Surprisingly, no reported numerical work has taken into account the effect of individual particles; they rather use the continuum approach to mass addition, leading to less accurate predictions. In this article, high-fidelity, experimentally validated, free surface thermo-fluidic modelling is done at the micro-scale utilizing open-source codes. The physical phenomena governing the laser metal deposition process, including free surface convection driven flow, mass momentum and energy transfer due to impinging particles, laser-particle interaction, gas entrapment, etc., have been considered. The influence of impinging particles on melt pool dynamics was studied by carrying out analysis using dimensionless numbers (Peclet, Marangoni and Grashof). The finding reveals that during heating the melt flow is mainly driven by the Marangoni force; subsequently, during particle addition, forces due to both particle impact and Marangoni convection play the dominant and counter-acting role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Gan, Y. Lian, S.E. Lin, K.K. Jones, W.K. Liu, and G.J. Wagner, Integr. Mater. Manuf. Innov. 8, 178 (2019).

    Article  Google Scholar 

  2. V. Manvatkar, A. De, and T. Debroy, J. Appl. Phys. 116, 124905 (2014).

    Article  Google Scholar 

  3. V. Neela and A. De, Int. J. Adv. Manuf. Technol. 45, 935 (2009).

    Article  Google Scholar 

  4. Z. Saldi, A. Kidess, S. Kenjereš, C. Zhao, I. Richardson, and C. Kleijn, Int. J. Heat Mass Transf. 66, 879 (2013).

    Article  Google Scholar 

  5. M. Hao and Y. Sun, Int. J. Heat Mass Transf. 64, 352 (2013).

    Article  Google Scholar 

  6. S. Morville, M. Carin, P. Peyre, M. Gharbi, D. Carron, P.L. Masson, and R. Fabbro, J. Laser Appl. 24, 032008 (2012).

    Article  Google Scholar 

  7. Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Weld. J. 93, 8 (2014).

    Google Scholar 

  8. Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Metall. Mater. Trans. B 45, 1520 (2014).

    Article  Google Scholar 

  9. S. Wen and Y.C. Shin, J. Appl. Phys. 108, 044908 (2010).

    Article  Google Scholar 

  10. H. Qi, J. Mazumder, and H. Ki, J. Appl. Phys. 100, 024903 (2006).

    Article  Google Scholar 

  11. A. Vinod, C. Srinivasa, R. Keshavamurthy, and P. Shashikumar, Rapid Prototyp. J. 22, 269 (2016).

    Article  Google Scholar 

  12. O.B. Kovalev, A.V. Zaitsev, D. Novichenko, and I. Smurov, J. Therm. Spray Technol. 20, 465 (2010).

    Article  Google Scholar 

  13. S. Zekovic, R. Dwivedi, and R. Kovacevic, Int. J. Mach. Tools Manuf. 47, 112 (2007).

    Article  Google Scholar 

  14. I.M.J. Ramses and A. Pinkerton, Development and Application of a CFD Model of Laser Metal Deposition, dissertation (2012).

  15. O. Ubbink, Numerical Prediction of Two Fluid Systems with Sharp Interfaces, dissertation (1997).

  16. L. Li and B. Li, Particuology 39, 109 (2018).

    Article  Google Scholar 

  17. F. Jamshidi, H. Heimel, M. Hasert, X. Cai, O. Deutschmann, H. Marschall, and M. Wörner, Comput. Phys. Commun. 236, 72 (2019).

    Article  Google Scholar 

  18. Z.S. Saldi, Marangoni Driven Free Surface Flows in Liquid Weld Pools, dissertation (2012).

  19. W.D. Bennon and F.P. Incropera, Int. J. Heat Mass Transf. 30, 10 (1987).

    Google Scholar 

  20. A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. 13, 3 (1988).

    Article  Google Scholar 

  21. A. Shah, A. Kumar, and J. Ramkumar, J. Mater. Process. Technol. 256, 109 (2018).

    Article  Google Scholar 

  22. L. Tan, S. Leong, E. Leonardi, and T. Barber, Prog. Comput. Fluid Dyn. 6, 6 (2006).

    Article  Google Scholar 

  23. Crespo António, Modelling of Heat Transfer and Phase Transformations in the Rapid Manufacturing of Titanium Components (INTECH Open Access Publisher, 2011).

  24. X. He, P.W. Fuerschbach, and T. Debroy, J. Phys. D Appl. Phys. 36, 1388 (2003).

    Article  Google Scholar 

  25. S. Bag and A. De, Computational Modelling of Conduction Mode Laser Welding Process (INTECH Open Access Publisher, 2010).

  26. A. Hozoorbakhsh, M.I.S. Ismail, A.A.D.M. Sarhan, A. Bahadoran, and N.B.A. Aziz, Int. Commun. Heat Mass Transf. 75, 328 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology, Ministry of Science and Technology, India (Grant No. DST/TDT/AMT/2017/118) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, A., Aggarwal, A. & Kumar, A. Microscale Analysis of Melt Pool Dynamics Due To Particle Impingement and Laser-Matter Interaction in the Spot Laser Metal Deposition Process. JOM 72, 1138–1150 (2020). https://doi.org/10.1007/s11837-019-04000-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-04000-x

Navigation