A Materials Perspective on the Design of Damage-Resilient Bone Implants Through Additive/Advanced Manufacturing

Abstract

After more than 5 decades of research, the failure of bone implants is still poorly understood. The aging population makes it increasingly urgent to solve this issue. Among the reasons for failure, catastrophic brittle fracture can be directly related to the implant material and fabrication and deserves more attention. Indeed, clinically available implants do not sufficiently reproduce the hierarchical and heterogeneous microstructural organization of our natural bones, ultimately failing at replicating their mechanical strength and toughness. Nevertheless, recent advances in additive and advanced manufacturing have opened new horizons for the fabrication of biomimetic bone implants, challenging at the same time their characterization, testing, and modeling. This critical review covers selected recent achievements in bone implant research from a materials standpoint and aims at deciphering some of the most urgent issues in this multidisciplinary field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    H.M. Kremers, D.R. Larson, C.S. Crowson, W.K. Kremers, R.E. Washington, C.A. Steiner, W.A. Jiranek, and D.J. Berry, J. Bone Joint Surg. 97, 1386 (2015).

    Google Scholar 

  2. 2.

    C. Cheung, S. Bin, M. Chadha, E.S. Chow, Y. Chung, F. Lee, U. Jaisamrarn, H. Ng, Y. Takeuchi, C. Wu, W. Xia, J. Yu, and S. Fujiwara, Osteoporos. Sarcopenia 4, 16 (2018).

    Google Scholar 

  3. 3.

    K.L. Corbett, E. Losina, A.A. Nti, J.J.Z. Prokopetz, and J.N. Katz, PLoS ONE 5, e13520 (2010).

    Google Scholar 

  4. 4.

    L.E. Bayliss, D. Culliford, A.P. Monk, S. Glyn-jones, D. Prieto-alhambra, A. Judge, C. Cooper, A.J. Carr, N.K. Arden, D.J. Beard, and A.J. Price, Lancet 389, 1424 (2017).

    Google Scholar 

  5. 5.

    A.M. Elbuluk, A.B. Old, J.A. Bosco, R. Schwarzkopf, and R. Iorio, Arthroplast. Today 3, 286 (2017).

    Google Scholar 

  6. 6.

    M. Weber, T. Renkawitz, F. Voellner, B. Craiovan, F. Greimel, M. Worlicek, J. Grifka, and A. Benditz, Biomed. Res. Int. 2018, 8987104 (2018).

    Google Scholar 

  7. 7.

    M. Dhima, V. Paulusova, A.B. Carr, K.L. Rieck, C. Lohse, and T.J. Salinas, J. Prosthet. Dent. 111, 124 (2014).

    Google Scholar 

  8. 8.

    A. Marshall, M.D. Ries, and W. Paprosky, J. Am. Acad. Orthop. Surg. 16, 1 (2008).

    Google Scholar 

  9. 9.

    S.H. Teoh, Int. J. Fatigue 22, 825 (2000).

    Google Scholar 

  10. 10.

    L. Ewart and S. Suresh, J. Mater. Sci. 22, 1173 (1987).

    Google Scholar 

  11. 11.

    K. Man, L. Jiang, R. Foster, and X.B. Yang, J. Funct. Biomater. 8, 33 (2017).

    Google Scholar 

  12. 12.

    E. Gibon, L. Lu, T. Lin, Z. Yao, S.B. Goodman, H. Cochin, and M. Surgery, J. Biomed. Mater. Res. B Appl. Biomater. 105, 1685 (2017).

    Google Scholar 

  13. 13.

    A.J.S. Fox, A. Bedi, and S.A. Rodeo, Sports Health 1, 461 (2009).

    Google Scholar 

  14. 14.

    A.J. Kerin, M.R. Wisnom, and M.A. Adams, Proc. Inst. Mech. Eng. Part H J. Eng. Med. 212, 273 (1998).

    Google Scholar 

  15. 15.

    Y. Xiao, D.A. Rennerfeldt, E.A. Friis, S.H. Gehrke, and M.S. Detamore, J. Tissue Eng. Regen. Med. 11, 121 (2017).

    Google Scholar 

  16. 16.

    A.J. Teichtahl, A.E. Wluka, P. Wijethilake, Y. Wang, A. Ghasem-zadeh, and F.M. Cicuttini, Arthritis Res. Ther. 17, 207 (2015).

    Google Scholar 

  17. 17.

    R.J. Mogil, S.C. Kaste, R.J. Ferry, M.M. Hudson, D.A. Mulrooney, C.R. Howell, R.E. Partin, D.K. Srivastava, L.L. Robison, and K.K. Ness, JAMA Oncol. 2, 908 (2016).

    Google Scholar 

  18. 18.

    V. Ruprecht, P. Monzo, A. Ravasio, Z. Yue, E. Makhija, P.O. Strale, N. Gauthier, G.V. Shivashankar, V. Studer, C. Albiges-rizo, and V. Viasnoff, J. Cell Sci. 130, 51 (2017).

    Google Scholar 

  19. 19.

    M. Sobieraj and C. Rimnac, J. Mech. Behav. Biomed. Mater. 2, 433 (2009).

    Google Scholar 

  20. 20.

    B. Weightman, S.A. Swanson, G.H. Isaac, and B.M. Wroblewski, J. Bone Joint Surg. 73, 806 (1991).

    Google Scholar 

  21. 21.

    V. Ooij, S.M. Kurtz, F. Stessels, H. Noten, and L. Van Rhijn, Spine (Phila. Pa. 1976) 32, 223 (2007).

    Google Scholar 

  22. 22.

    B.M.E. Launey and R.O. Ritchie, Adv. Mater. 21, 2103 (2009).

    Google Scholar 

  23. 23.

    W. Huang, D. Restrepo, J.Y. Jung, F.Y. Su, Z. Liu, R.O. Ritchie, J. McKittrick, P. Zavattieri, and D. Kisailus, Adv. Mater. 1901561, 1 (2019).

    Google Scholar 

  24. 24.

    K.J. Koester, J.W. Ager, and R.O. Ritchie, Nat. Mater. 7, 672 (2008).

    Google Scholar 

  25. 25.

    M.E. Launey, P.Y. Chen, J. McKittrick, and R.O. Ritchie, Acta Biomater. 6, 1505 (2010).

    Google Scholar 

  26. 26.

    D.R. Pedersen, R.D. Crowninshield, R.A. Brand, and R.C. Johnston, J. Biomech. 15, 305 (1982).

    Google Scholar 

  27. 27.

    J.A. Rodriguez and H.J. Cooper, Bone Joint J. 95-B, 63 (2013).

    Google Scholar 

  28. 28.

    L.C. Zhang, E.C.S. Kiat, and A. Pramanik, Adv. Mater. Res. 78, 212 (2009).

    Google Scholar 

  29. 29.

    K. Colic, A. Sedmak, A. Grbovic, U. Tatic, and S. Sedmak, Procedia Eng. 149, 257 (2016).

    Google Scholar 

  30. 30.

    J.C. Koch, Am. J. Anat. 21, 177 (1917).

    Google Scholar 

  31. 31.

    T. Macirowsk, S. Topic, and R.W. Mann, J. Biomech. Eng. 116, 10 (1994).

    Google Scholar 

  32. 32.

    G.A.P. Renders, L. Mulder, L.J. Van Ruijven, and T.M.G.J. Van Eijden, J. Anat. 210, 239 (2007).

    Google Scholar 

  33. 33.

    G. Osterhoff, E.F. Morgan, S.J. Shefelbine, L. Karim, L.M. McNamara, and P. Augat, Injury 47, 11 (2016).

    Google Scholar 

  34. 34.

    R. Müller, Nat. Rev. Rheumatol. 5, 373 (2009).

    Google Scholar 

  35. 35.

    J. Mckittrick, P. Chen, L. Tombolato, E.E. Novitskaya, M.W. Trim, G.A. Hirata, E.A. Olevsky, M.F. Horstemeyer, and M.A. Meyers, Mater. Sci. Eng. C 30, 331 (2010).

    Google Scholar 

  36. 36.

    E. Novitskaya, P.-Y. Chen, E. Hamed, J. Li, V.A. Lubarda, I. Jasiuk, and J. McKittrick, Theor. Appl. Mech. 38, 209 (2011).

    MathSciNet  Google Scholar 

  37. 37.

    F.A. Shah, Bone Res. 7, 1 (2019).

    Google Scholar 

  38. 38.

    A.G. Reisinger, D.H. Pahr, and P.K. Zysset, J. Mech. Behav. Biomed. Mater. 4, 2113 (2011).

    Google Scholar 

  39. 39.

    J.G. Kennedy and D.R. Carter, J. Biomech. Eng. 107, 183 (1985).

    Google Scholar 

  40. 40.

    A. Gustafsson, M. Wallin, H. Khayyeri, and H. Isaksson, Biomech. Model. Mechanobiol. 18, 1247 (2019).

    Google Scholar 

  41. 41.

    S.J. Eppell, W. Tong, J.L. Katz, L. Kuhn, and M.J. Glimcher, J. Orthop. Res. 19, 1027 (2001).

    Google Scholar 

  42. 42.

    D.S. Bocciarelli, Calcif. Tissue Res. 5, 261 (1970).

    Google Scholar 

  43. 43.

    M.P.E. Wenger, L. Bozec, M.A. Horton, and P. Mesquida, Biophys. J. 93, 1255 (2007).

    Google Scholar 

  44. 44.

    W.S. William and L. Breger, J. Biomech. 8, 407 (1975).

    Google Scholar 

  45. 45.

    M.H. Shamos, Nature 4, 1963 (1963).

    Google Scholar 

  46. 46.

    U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Nat. Mater. 14, 23 (2015).

    Google Scholar 

  47. 47.

    V. Imbeni, J.J. Kruzic, G.W. Marshall, S.J. Marshall, and R.O. Ritchie, Nat. Mater. 4, 229 (2005).

    Google Scholar 

  48. 48.

    S.R. Oungoulian, K.M. Durney, B.K. Jones, C.S. Ahmad, T. Clark, and G.A. Ateshian, J. Biomech. 2015 Jul 16;48(10) 48, 1957 (2016).

  49. 49.

    O. Franke, K. Durst, V. Maier, M. Göken, T. Birkholz, H. Schneider, F. Hennig, and K. Gelse, Acta Biomater. 3, 873 (2007).

    Google Scholar 

  50. 50.

    M. Canillas, P. Pena, A.H. De Aza, and M.A. Rodríguez, Boletín La Soc. Española Cerámica y Vidr. 56, 91 (2017).

    Google Scholar 

  51. 51.

    C.-H. Liu, C.-J. Lin, Y.-H. Hu, and Z.-H. You, Appl. Sci. 8, 698 (2018).

    Google Scholar 

  52. 52.

    C.T. Chen and G.X. Gu, MRS Commun. 9, 556 (2019).

    Google Scholar 

  53. 53.

    K.G. Reyes and B. Maruyama, MRS Bull. 44, 530 (2019).

    Google Scholar 

  54. 54.

    S.J. Mary and S. Rajendran, Zast. Mater. 53, 181 (2012).

    Google Scholar 

  55. 55.

    J. Jeong, J.H. Kim, J.H. Shim, N.S. Hwang, and C.Y. Heo, Biomater. Res. 23, 1 (2019).

    Google Scholar 

  56. 56.

    A. Abdel-Wahab, N. Nordin, and V. Silberschmidt, J. Phys. Conf. Ser. 382, 0 (2012).

  57. 57.

    M.E. Launey, M.J. Buehler, and R.O. Ritchie, Annu. Rev. Mater. Res. 40, 25 (2010).

    Google Scholar 

  58. 58.

    R.O. Ritchie, J.H. Kinney, J.J. Kruzic, and R.K. Nalla, Fatigue Fract. Eng. Mater. Struct. 28, 345 (2005).

    Google Scholar 

  59. 59.

    E.N. Brown, S.R. White, and N.R. Sottos, J. Mater. Sci. 41, 6266 (2006).

    Google Scholar 

  60. 60.

    R.R. Adharapurapu, K.S. Vecchio, F. Jiang, and A. Rohatgi, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 1595 (2005).

    Google Scholar 

  61. 61.

    R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Google Scholar 

  62. 62.

    B. Lawn, Fracture of Brittle Solids, 2nd ed. (Cambridge: Cambridge University Press, 1993).

    Google Scholar 

  63. 63.

    A.G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

    Google Scholar 

  64. 64.

    N. Padture, J. Am. Ceram. Soc. 77, 519 (1994).

    Google Scholar 

  65. 65.

    Y. Yang, C. Ramirez, X. Wang, Z. Guo, A. Tokranov, R. Zhao, I. Szlufarska, J. Lou, and B.W. Sheldon, Carbon N. Y. 115, 402 (2017).

    Google Scholar 

  66. 66.

    B.W. Sheldon, E.Y. Sun, S.R. Nutt, and J.J. Brennan, J. Am. Ceram. Soc. 79, 539 (1996).

    Google Scholar 

  67. 67.

    S. Mohammad, M. Valashani, and F. Barthelat, Bioinspir. Biomim. 10, 26005 (2015).

    Google Scholar 

  68. 68.

    M. Mirkhalaf, T. Zhou, and F. Barthelat, PNAS 115, 9128 (2018).

    Google Scholar 

  69. 69.

    F. Lee, M.S. Sandlin, and K.J. Bowman, J. Am. Ceram. Soc. 76, 1793 (1993).

    Google Scholar 

  70. 70.

    X. Zhu and Y. Sakka, Sci. Technol. Adv. Mater. 9, 1 (2008).

    Google Scholar 

  71. 71.

    F. Barthelat, H. Tang, P.D. Zavattieri, and H.D. Espinosa, J. Mech. Phys. Solids 55, 306 (2007).

    Google Scholar 

  72. 72.

    J. Sun and B. Bhushan, RSC Adv. 2, 7617 (2012).

    Google Scholar 

  73. 73.

    U. Pasqualini and M.E. Pasqualini, Ariesdue 4, 1 (2009).

    Google Scholar 

  74. 74.

    G. Atlan, O. Delattre, S. Berland, A. Lefaou, G. Nabias, D. Cot, and E. Lopez, Biomaterials 20, 1017 (1999).

    Google Scholar 

  75. 75.

    S. Berland, O. Delattre, S. Borzeix, Y. Catonné, and E. Lopez, Biomaterials 26, 2767 (2005).

    Google Scholar 

  76. 76.

    V. Moby, G. Zhang, A. Brion, A. Willemin, A. Bianchi, D. Mainard, L. Galois, P. Gillet, and M. Rousseau, J. Biomed. Mater. Res. A 105A, 662 (2017).

    Google Scholar 

  77. 77.

    H. Le Ferrand, F. Bouville, T.P. Niebel, and A.R. Studart, Nat. Mater. 14, 1172 (2015).

    Google Scholar 

  78. 78.

    T.P. Niebel, F. Bouville, D. Kokkinis, and A.R. Studart, J. Mech. Phys. Solids 96, 133 (2016).

    Google Scholar 

  79. 79.

    Y. Yang, X. Li, M. Chu, H. Sun, J. Jin, K. Yu, Q. Wang, Q. Zhou, and Y. Chen, Sci. Adv. 5, 1 (2019).

    Google Scholar 

  80. 80.

    C. Huang, J. Peng, Y. Cheng, Q. Zhao, Y. Du, S. Dou, A.P. Tomsia, H.D. Wagner, L. Jiang, and Q. Cheng, J. Mater. Chem. A 7, 2787 (2019).

    Google Scholar 

  81. 81.

    M.E. Launey, E. Munch, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, J. R. Soc. Interface 7, 741 (2010).

    Google Scholar 

  82. 82.

    A. Wat, J.I. Lee, C.W. Ryu, B. Gludovatz, J. Kim, A.P. Tomsia, T. Ishikawa, J. Schmitz, A. Meyer, M. Alfreider, D. Kiener, E.S. Park, and R.O. Ritchie, Nat. Commun. 10, 1 (2019).

    Google Scholar 

  83. 83.

    U.G.K. Wegst, M. Schecter, A.E. Donius, and P.M. Hunger, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368, 2099 (2010).

    Google Scholar 

  84. 84.

    S. Deville, E. Saiz, and A.P. Tomsia, Biomaterials 27, 5480 (2006).

    Google Scholar 

  85. 85.

    J. Ni, H. Ling, S. Zhang, Z. Wang, and Z. Peng, Materials Today Bio. 3, 24 (2019).

    Google Scholar 

  86. 86.

    R. Masaeli, K. Zandsalimi, M. Rasoulianboroujeni, and L. Tayebi, Tissue Eng. Part B Rev. 25, 387 (2019).

    Google Scholar 

  87. 87.

    U. Heise, J.F. Osborn, and F. Duwe, Int. Orthop. 14, 329 (1990).

    Google Scholar 

  88. 88.

    H.N.W. Lekkerkerker and G.J. Vroege, Philos. Trans. R Soc. A 371, 263 (2013).

    Google Scholar 

  89. 89.

    K. Thorkelsson, P. Bai, and T. Xu, Nano Today 10, 48 (2015).

    Google Scholar 

  90. 90.

    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).

    Google Scholar 

  91. 91.

    H.N.W. Lekkerkerker and G.J. Vroege, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, 263 (2013).

    Google Scholar 

  92. 92.

    W. Xue and G.S. Grest, Phys. Rev. Lett. 64, 419 (1990).

    Google Scholar 

  93. 93.

    D. Yunus, Y. Shi, S. Sohrabi, and Y. Liu, Nanotechnology 27, 0 (2016).

    Google Scholar 

  94. 94.

    I. Nelson and S.E. Naleway, Integr. Med. Res. 8, 2372 (2019).

    Google Scholar 

  95. 95.

    H. Watanabe, T. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc. 72, 189 (1989).

    Google Scholar 

  96. 96.

    A. Garbin, I. Leibacher, P. Hahn, H. Le Ferrand, A. Studart, and J. Dual, J. Acoust. Soc. Am. 138, 2759 (2015).

    Google Scholar 

  97. 97.

    H. Le Ferrand, F. Bouville, and A.R. Studart, Soft Matter 15, 3886 (2019).

    Google Scholar 

  98. 98.

    S. Wu, S. Peng, and C.H. Wang, Polymers (Basel) 10, 542 (2018).

    Google Scholar 

  99. 99.

    D. Velegol, A. Garg, R. Guha, A. Kar, and M. Kumar, Soft Matter 12, 4686 (2016).

    Google Scholar 

  100. 100.

    P. Warren, Nature 429, 822 (2004).

    Google Scholar 

  101. 101.

    A.F. Demirörs, P.P. Pillai, B. Kowalczyk, and B.A. Grzybowski, Nature 503, 99 (2013).

    Google Scholar 

  102. 102.

    D. Kokkinis, M. Schaffner, and A.R. Studart, Nat. Commun. 45, 333 (2015).

    Google Scholar 

  103. 103.

    R. Libanori, R.M. Erb, A. Reiser, H. Le Ferrand, M.J. Süess, R. Spolenak, and A.R. Studart, Nat. Commun. 3, 1 (2012).

    Google Scholar 

  104. 104.

    F.L. Bargardi, H. Le Ferrand, R. Libanori, and A.R. Studart, Nat. Commun. 7, 1 (2016).

    Google Scholar 

  105. 105.

    L. Bracaglia, B.T. Smith, E. Watson, N. Arumugasaamy, A.G. Mikos, and J.P. Fisher, Acta Biomater. 25, 289 (2016).

    Google Scholar 

  106. 106.

    S.M. Bittner, B.T. Smith, L. Diaz-Gomez, C.D. Hudgins, A.J. Melchiorri, D.W. Scott, J.P. Fisher, and A.G. Mikos, Acta Biomater. 90, 37 (2019).

    Google Scholar 

  107. 107.

    B.P. Greil, Adv. Eng. Mater. 2, 339 (2000).

    Google Scholar 

  108. 108.

    J.J. Martin, B.E. Fiore, and R.M. Erb, Nat. Commun. 6, 1 (2015).

    Google Scholar 

  109. 109.

    E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science (80-) 322, 1516 (2008).

    Google Scholar 

  110. 110.

    F. Bouville, E. Maire, S. Meille, B. Van De Moortèle, and A.J. Stevenson, Nat. Mater. 13, 508 (2014).

    Google Scholar 

  111. 111.

    H. Le Ferrand, J. Mater. Res. 34, 169 (2019).

    Google Scholar 

  112. 112.

    P. Niksiar, F.Y. Su, M.B. Frank, T.A. Ogden, S.E. Naleway, M.A. Meyers, J. Mckittrick, and M.M. Porter, Ceramics 2, 1 (2019).

    Google Scholar 

  113. 113.

    Z. Hu, X. Shen, S. Geng, P. Shen, and Q. Jiang, Ceram. Int. 44, 5803 (2018).

    Google Scholar 

  114. 114.

    C. Wang, X. Chen, B. Wang, M. Huang, B. Wang, Y. Jiang, and R.S. Ruo, ACS Nano 12, 5816 (2018).

    Google Scholar 

  115. 115.

    H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, and R.O. Ritchie, Adv. Mater. 2, 50 (2016).

    Google Scholar 

  116. 116.

    K.L. Scotti and D.C. Dunand, Prog. Mater Sci. 94, 243 (2018).

    Google Scholar 

  117. 117.

    H. Le Ferrand and F. Bouville, J. Am. Ceram. Soc. 102, 7253 (2019).

    Google Scholar 

  118. 118.

    B.R. Marple and S. Tuffe, in Functionally Graded Materials, edited by I. Shiota and M. Miyamoto, pp. 159–166 (1997).

  119. 119.

    S. Gantenbein, K. Masania, W. Woigk, J.P.W. Sesseg, T.A. Tervoort, and A.R. Studart, Nature 561, 226 (2018).

    Google Scholar 

  120. 120.

    E. Feilden, C. Ferraro, Q. Zhang, E. García-Tuñón, E. D’Elia, F. Giuliani, L. Vandeperre, and E. Saiz, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  121. 121.

    S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia, Science (80-) 311, 1 (2006).

    Google Scholar 

  122. 122.

    Y. Tang, Q. Miao, S. Qiu, K. Zhao, and L. Hu, J. Eur. Ceram. Soc. 34, 4077 (2014).

    Google Scholar 

  123. 123.

    S. Amini, A. Masic, L. Bertinetti, J.S. Teguh, J.S. Herrin, X. Zhu, H. Su, and A. Miserez, Nat. Commun. 5, 1 (2014).

    Google Scholar 

  124. 124.

    M. Sebastiani, K.E. Johanns, E.G. Herbert, and G.M. Pharr, Curr. Opin. Solid State Mater. Sci. 19, 324 (2015).

    Google Scholar 

  125. 125.

    M. Grossman, F. Bouville, F. Erni, K. Masania, R. Libanori, and A.R. Studart, Adv. Mater. 29, 1 (2017).

    Google Scholar 

  126. 126.

    B. Lawn, A.G. Evans, and D. Marshall, J. Am. Ceram. Soc. 63, 574 (1980).

    Google Scholar 

  127. 127.

    B.W. Sheldon and W.A. Curtin, Nat. Mater. 3, 505 (2004).

    Google Scholar 

  128. 128.

    J. Rice, J. Appl. Mech. 35, 379 (1968).

    Google Scholar 

  129. 129.

    C.E. Athanasiou, M.O. Hongler, and Y. Bellouard, Phys. Rev. Appl. 8, 1 (2017).

    Google Scholar 

  130. 130.

    C.E. Athanasiou and Y. Bellouard, Micromachines 6, 1365 (2015).

    Google Scholar 

  131. 131.

    Z. Jia and L. Wang, Acta Mater. 173, 61 (2019).

    Google Scholar 

  132. 132.

    ASTM C1421-18, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature (ASTM International, West Conshohocken, PA, 2018).

  133. 133.

    P.Y. Chen, A.G. Stokes, and J. McKittrick, Acta Biomater. 5, 693 (2009).

    Google Scholar 

  134. 134.

    T. Nose and T. Fujii, J. Am. Ceram. Soc. 71, 328 (1988).

    Google Scholar 

  135. 135.

    F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A.J. Stevenson, and S. Deville, arXiv 1707.09528, 2 (2017).

  136. 136.

    J.Y. Buffiere, E. Maire, J. Adrien, J.P. Masse, and E. Boller, Proc. Soc. Exp. Mech. 67, 289 (2010).

    Google Scholar 

  137. 137.

    J. Réthoré, N. Limodin, J.Y. Buffière, S. Roux, and F.Ç. Hild, Procedia IUTAM 4, 151 (2012).

    Google Scholar 

  138. 138.

    S.C. Wu, T.Q. Xiao, and P.J. Withers, Eng. Fract. Mech. 182, 127 (2017).

    Google Scholar 

  139. 139.

    H. Le Ferrand, F. Bouville, T.P. Niebel, and A.R. Studart, Nat. Mater. 16, 1272 (2017).

    Google Scholar 

  140. 140.

    J. Ast, M. Ghidelli, K. Durst, M. Göken, M. Sebastiani, and A.M. Korsunsky, Mater. Des. 173, 107762 (2019).

    Google Scholar 

  141. 141.

    R.O. Ritchie, K.J. Koester, S. Ionova, W. Yao, N.E. Lane, and J.W. Ager III, Bone 23, 1 (2008).

    Google Scholar 

  142. 142.

    F. Barthelat, A.K. Dastjerdi, and R. Rabiei, J. R. Soc. Interface 10, 849 (2013).

    Google Scholar 

  143. 143.

    D.M. Ebenstein and L.A. Pruitt, Nano Today 1, 26 (2006).

    Google Scholar 

  144. 144.

    F. Haque, Surf. Eng. 19, 255 (2003).

    Google Scholar 

  145. 145.

    L.V. Coutts, T. Jenkins, T. Li, D.G. Dunlop, R.O.C. Oreffo, C. Cooper, N.C. Harvey, P.J. Thurner, N.K. Arden, J.M. Latham, P. Taylor, M. Baxter, N. Moss, C. Ball, and K. Chan, J. Mech. Behav. Biomed. Mater. 46, 292 (2015).

    Google Scholar 

  146. 146.

    R. Sonntag, S. Braun, L. Al-Salehi, J. Reinders, U. Mueller, and J.P. Kretzer, PLoS ONE 12, 1 (2017).

    Google Scholar 

  147. 147.

    A. Ravichandran, F. Wen, J. Lim, M.S.K. Chong, J.K.Y. Chan, and S.H. Teoh, J. Tissue Eng. Regen. Med. 12, e2039 (2018).

    Google Scholar 

  148. 148.

    E.A. Zimmermann, E. Schaible, H. Bale, H.D. Barth, S.Y. Tang, P. Reichert, B. Busse, T. Alliston, J.W. Ager, and R.O. Ritchie, Proc. Natl. Acad. Sci. USA 109, 11890 (2012).

    Google Scholar 

  149. 149.

    J.J. Kruzic, D.K. Kim, K.J. Koester, and R.O. Ritchie, J. Mech. Behav. Biomed. Mater. 2, 384 (2009).

    Google Scholar 

  150. 150.

    M. Zalaznik, S. Novak, M. Huskić, and M. Kalin, Lubr. Sci. 28, 27 (2016).

    Google Scholar 

  151. 151.

    M.Z. Hossain, C.J. Hsueh, B. Bourdin, and K. Bhattacharya, J. Mech. Phys. Solids 71, 15 (2014).

    MathSciNet  Google Scholar 

  152. 152.

    C.J. Hsueh and K. Bhattacharya, J. Appl. Mech. Trans. ASME 83, 1 (2016).

    Google Scholar 

  153. 153.

    R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  154. 154.

    G.X. Gu, C.T. Chen, D.J. Richmond, and M.J. Buehler, Mater. Horiz. 5, 939 (2018).

    Google Scholar 

Download references

Acknowledgements

H. L. F. acknowledges financial support from Nanyang Technological University with the Start-Up grant M4082382.050 and discussions with Dr. F. Bouville and Prof. S.-H. Teoh. C. E. A. acknowledges valuable discussions with Mr. X. Liu and Mr. T. Cai concerning the proofreading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hortense Le Ferrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 109 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Ferrand, H., Athanasiou, C.E. A Materials Perspective on the Design of Damage-Resilient Bone Implants Through Additive/Advanced Manufacturing. JOM 72, 1195–1210 (2020). https://doi.org/10.1007/s11837-019-03999-3

Download citation