Skip to main content
Log in

Microstructure and Mechanical Property of Ti-5Al-2.5Sn/Ti-6Al-4V Dissimilar Titanium Alloys Integrally Fabricated by Selective Laser Melting

  • The 2nd Asia-Pacific International Conference on Additive Manufacturing (APICAM 2019)
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metallic structural components made from dissimilar titanium alloys are playing important roles in high-end industries such as aerospace and aviation. In this paper, a Ti-5Al-2.5Sn/Ti-6Al-4V dissimilar titanium alloy material was additively manufactured by the selective laser melting (SLM) process. Interface characteristics, microstructure, and mechanical properties of the SLM-deposited samples before and after complete annealing treatment were researched to provide some technical basics for the integral fabrication of dissimilar titanium alloy components. The results demonstrated that a defect-free metallurgical bonded interface with a ~ 70-μm-wide element inter-diffusion region could be obtained between the Ti-5Al-2.5Sn and Ti-6Al-4V layers under both the as-deposited and the complete annealing states. The interfacial bonding strength between the dissimilar titanium alloys was always higher than the strength of the Ti-5Al-2.5Sn layers. Microstructure evolution and element inter-diffusion mechanisms of the SLM-produced Ti-5Al-2.5Sn/Ti-6Al-4V samples were also revealed and related to the change in mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Boyer, JOM 62, 21 (2010).

    Article  Google Scholar 

  2. D. Banerjee and J.C. Williams, Acta Mater. 61, 844 (2013).

    Article  Google Scholar 

  3. R.R. Boyer and R.D. Briggs, J. Mater. Eng. Perform. 22, 2916 (2013).

    Article  Google Scholar 

  4. M.A.R. Khan, M.M. Rahman, and K. Kadirgama, J. Adv. Manuf. Technol. 77, 1727 (2015).

    Article  Google Scholar 

  5. M. Junaid, F.N. Khan, K. Rahman, and M.N. Baig, Opt. Laser Technol. 97, 405 (2017).

    Article  Google Scholar 

  6. R. Boyer, G. Welsch, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, 4th ed. (Ohio: ASM International, 2007), pp. 287–288.

    Google Scholar 

  7. Y.Y. Sun, S. Gulizia, D. Fraser, C.H. Oh, S.L. Lu, and M. Qian, JOM 69, 1836 (2017).

    Article  Google Scholar 

  8. S. Liu and Y.C. Shin, Mater. Des. 164, 844 (2019).

    Article  Google Scholar 

  9. Y.J. Liang, D. Liu, and H.M. Wang, Scr. Mater. 74, 80 (2014).

    Article  Google Scholar 

  10. P. Zhao, L. Fu, and H. Chen, J. Alloys Compd. 675, 248 (2016).

    Article  Google Scholar 

  11. S.Q. Wang, W.Y. Li, K. Jing, X.Y. Zhang, and D.L. Chen, Mater. Sci. Eng. A 697, 224 (2017).

    Article  Google Scholar 

  12. Z. Gui, G. Min, D. Liu, and P. Hu, Int. J. Adv. Manuf. Technol. 79, 1597 (2015).

    Article  Google Scholar 

  13. H. Zhang, S. Hu, J. Shen, D. Li, and X. Bu, Opt. Laser Technol. 74, 158 (2015).

    Article  Google Scholar 

  14. S.Q. Wang, J.H. Liu, and D.L. Chen, Mater. Sci. Eng. A 584, 47 (2013).

    Article  Google Scholar 

  15. J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016).

    Article  Google Scholar 

  16. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 041101 (2015).

    Article  Google Scholar 

  17. Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, and L.E. Loh, Mater. Charact. 94, 116 (2014).

    Article  Google Scholar 

  18. S.L. Sing, L.P. Lam, D.Q. Zhang, Z.H. Liu, and C.K. Chua, Mater. Charact. 107, 220 (2015).

    Article  Google Scholar 

  19. M. Zhang, Y. Yang, D. Wang, C. Song, and J. Chen, Mater. Des. 165, 107583 (2019).

    Article  Google Scholar 

  20. C. Tan, K. Zhou, and T. Kuang, Mater. Lett. 237, 328 (2019).

    Article  Google Scholar 

  21. K. Wei, M. Gao, Z. Wang, and X. Zeng, Mater. Sci. Eng. A 611, 212 (2014).

    Article  Google Scholar 

  22. B. Vrancken, L. Thijs, J.P. Kruth, and J. Van Humbeeck, J. Alloys Compd. 541, 177 (2012).

    Article  Google Scholar 

  23. T. Vilaro, C. Colin, and J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011).

    Article  Google Scholar 

  24. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M. Qian, JOM 67, 668 (2015).

    Article  Google Scholar 

  25. R.J. Hebert, J. Mater. Sci. 51, 1165 (2016).

    Article  Google Scholar 

  26. M. Simonelli, Y.Y. Tse, and C. Tuck, Metall. Mater. Trans. A 45, 2863 (2014).

    Article  Google Scholar 

  27. F. Li, Z. Wang, and X. Zeng, Mater. Lett. 199, 79 (2017).

    Article  Google Scholar 

  28. K. Wei, Z. Wang, and X. Zeng, Mater. Sci. Eng. A 709, 301 (2018).

    Article  Google Scholar 

  29. J. Yang, J. Han, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Mater. Des. 110, 558 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFB1103800) and China Postdoctoral Science Foundation (Grant No. 2018M642829).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, K., Zeng, X., Li, F. et al. Microstructure and Mechanical Property of Ti-5Al-2.5Sn/Ti-6Al-4V Dissimilar Titanium Alloys Integrally Fabricated by Selective Laser Melting. JOM 72, 1031–1038 (2020). https://doi.org/10.1007/s11837-019-03988-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03988-6

Navigation