Skip to main content
Log in

Phase Transition of Waste Silicon Carbide Side Block from Aluminum Smelters During Vacuum High-Temperature Detoxification Process

  • Recycling Silicon and Silicon Compounds
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Waste silicon carbide side block (WSB) from aluminum reduction cells are considered as hazardous materials since they contain a large amount of soluble fluoride salts. The storage of this material outside or in landfills is detrimental for the environment. A joint temperature–vacuum controlling process for treating WSB is proposed in this paper. Thermodynamic analysis by FactSage 7.0, and a series of experimental investigation and characteristics tests on the product materials by SEM and XRD were carried out. The results showed that the fluoride in the waste side block was completely volatilized, and the silicon nitride was also decomposed after being treated at 1600°C under a vacuum of 10 Pa. The soluble fluoride concentration was reduced from 2216 mg L−1 to 3.9 mg L−1, and the silicon carbide content was increased from 76.7 wt.% to 91.5 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Kasuriya and P. Thavorniti, Mater. Sci. Forum 534, 1073 (2007).

    Article  Google Scholar 

  2. M.I. Jones, E. Ron, M. Jim, Y. Zhou, H. Hyuga, Y. Yoshizawa, and K. Hirao, Key Eng. Mat. 403, 235 (2009).

    Article  Google Scholar 

  3. H. Bhatt, K.Y. Donaldson, D. Hasselman, and R.T. Bhatt, J. Am. Ceram. Soc. 75, 334 (2010).

    Article  Google Scholar 

  4. X.Y. Xia and J. Li, Adv. Mater. Res. 146, 1473 (2011).

    Google Scholar 

  5. Z. Wang, E. Skybakmoen, and T. Grande, J. Am. Ceram. Soc. 2, 1296 (2010).

    Google Scholar 

  6. N.V. Grachev, E.P. Orlov, D.V. Mukhin, and V.P. Kryuchkova, Refract. Ind. Ceram. 47, 78 (2006).

    Article  Google Scholar 

  7. B.I. Silveira, A.E. Dantas, J.E. Blasquez, and R.K.P. Santos, J. Hazard. Mater. 89, 177 (2002).

    Article  Google Scholar 

  8. M.J. Palmieri, L.F. Andrade, M.V.C. Trento, M.W. FariaEleutério, J. Luber, L.C. Davide, and S. Marcussi, Water Air Soil Pollut. 227, 1 (2016).

    Article  Google Scholar 

  9. L.F. Andrade, L.C. Davide, L.S. Gedraite, J.M.S. Campos, and H. Azevedo, Ecotoxicol. Environ. Saf. 74, 2065 (2011).

    Article  Google Scholar 

  10. L.F. Andrade, L.C. Davide, and L.S. Gedraite, Ecotoxicol. Environ. Saf. 73, 626 (2010).

    Article  Google Scholar 

  11. B.D. Turner, P.J. Binning, and S.W. Sloan, J. Contam. Hydrol. 95, 110 (2008).

    Article  Google Scholar 

  12. N. Li, Adv. Mater. Res. 881, 1660 (2014).

    Article  Google Scholar 

  13. G. Hollywell and R. Breault, JOM 65, 1441 (2013).

    Article  Google Scholar 

  14. B. Mazumder and S.R. Devi, J. Environ. Sci. Eng. 50, 203 (2008).

    Google Scholar 

  15. S. Huang, Light Met. 4, 29 (2009).

    Google Scholar 

  16. H. Arnljot, Proceedings of 35th International ICSOBA Conference 1081 (2017).

  17. B. Mazumder and S.R. Devi, J. Appl. Chem. 3, 24 (2013).

    Google Scholar 

  18. D. Yu and K. Chattopadhyay, Can. Metall. Q. 55, 251 (2016).

    Article  Google Scholar 

  19. P. VonKrüger, Light Met. 49, 275 (2011).

    Google Scholar 

  20. L. Birry, S. Leclerc, and S. Poirier, Light Met. 77, 467 (2016).

    Google Scholar 

  21. D.F. Lisbona, C. Somerfield, and K.M. Steel, Hydrometallurgy 134, 132 (2013).

    Article  Google Scholar 

  22. V. Gomes, P.Z. Drumond, J.O.P. Neto, and A.R. Lira, Light Met. 142, 1057 (2005).

    Google Scholar 

  23. R.K. Womack, JOM 51, 14 (1999).

    Article  Google Scholar 

  24. C.Y. Hu, S.L. Lo, W.H. Kuan, and Y.D. Lee, Water Res. 39, 895 (2005).

    Article  Google Scholar 

  25. E.J. Reardon and Y. Wang, Environ. Sci. Technol. 34, 3247 (2000).

    Article  Google Scholar 

  26. J.Z. Song, Northeastern University 1, 6 (2010).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the China’s Aluminum Industry Sustainable Development Strategy (2018-XY-14) and Key R&D Program of Ningxia Hui Autonomous Region (2018BDE02050). The authors are grateful to the reviewers who helped to improve the paper by many pertinent comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Guo, X., Liu, W. et al. Phase Transition of Waste Silicon Carbide Side Block from Aluminum Smelters During Vacuum High-Temperature Detoxification Process. JOM 72, 2697–2704 (2020). https://doi.org/10.1007/s11837-019-03978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03978-8

Navigation