Skip to main content
Log in

Salt Preform Texturing of Absorbable Zn Substrates for Bone-Implant Applications

  • Biodegradable Materials for Medical Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Surface roughness is an important factor in improving the bone-implant contact area to enhance bone regeneration, yet this aspect has not been applied to absorbable metals. Textured zinc surfaces with varying degrees of surface roughness were produced using a salt-preform method with fine- and coarse-grained salts and compared with a polished control sample. The resulting surfaces were characterized by scanning electron microscopy, surface roughness, corrosion rates, and in vitro cytotoxicity. The resulting textured surfaces exhibit micron-sized cavities and increased roughness consistent with the initial salt particle size. The corrosion rate was shown to accelerate significantly compared with the polished control sample, and pre-osteoblasts displayed healthy morphologies on the textures. The results confirm textured zinc surfaces support cell adhesion and can be used to control the corrosion rate. This study represents an important intermediate step that can be applied to porous absorbable metal scaffolds for bone-implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Bohner, Mater. Today 13, 24 (2010).

    Google Scholar 

  2. A.S. Greenwald, S.D. Boden, V.M. Goldberg, Y. Khan, C.T. Laurencin, and R.N. Rosier, JBJS 83, S98 (2001).

    Google Scholar 

  3. S. Vercaigne, J.G. Wolke, I. Naert, and J.A. Jansen, Biomaterials 19, 1093 (1998).

    Google Scholar 

  4. A.F. Mavrogenis, R. Dimitriou, J. Parvizi, and G.C. Babis, J. Musculoskelet. Neuronal Interact. 9, 61 (2009).

    Google Scholar 

  5. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, and L. Ren, J. Mech. Behav. Biomed. Mater. 77, 90 (2018).

    Google Scholar 

  6. R. Karuppal, J. Orthop. 13, 190 (2016).

    Google Scholar 

  7. S.-J. Ahn, R. Leesungbok, and S.-W. Lee, J. Oral Implantol. 36, 263 (2010).

    Google Scholar 

  8. M.A. Lopez-Heredia, E. Goyenvalle, E. Aguado, P. Pilet, C. Leroux, M. Dorget, P. Weiss, and P. Layrolle, J. Biomed. Mater. Res., Part A 85, 664 (2008).

    Google Scholar 

  9. E. Walker, M. Heiden, and L. Stanciu, J. Biotechnol. Biomater. 5, 1 (2015).

    Google Scholar 

  10. N.O. Joy-anne, Y. Su, X. Lu, P.-H. Kuo, J. Du, and D. Zhu, Bioact. Mater. 4, 261 (2019).

    Google Scholar 

  11. Y. Su, I. Cockerill, Y. Zheng, L. Tang, Y.X. Qin, and D. Zhu, Bioact. Mater. 4, 196 (2019).

    Google Scholar 

  12. H. Yang, C. Wang, C. Liu, H. Chen, Y. Wu, J. Han, Z. Jia, W. Lin, D. Zhang, W. Li, W. Yuan, H. Guo, H. Li, G. Yang, D. Kong, D. Zhu, K. Takashima, L. Ruan, J. Nie, X. Li, and Y. Zheng, Biomaterials 145, 92 (2017).

    Google Scholar 

  13. N. Zhao and D. Zhu, Int. J. Biomed. Eng. Technol. 12, 113 (2013).

    Google Scholar 

  14. J. Ma, N. Zhao, and D. Zhu, J. Biomed. Mater. Res., Part A 104, 347 (2016).

    Google Scholar 

  15. N. Zhao and D. Zhu, Metallomics 7, 118 (2015).

    Google Scholar 

  16. D. Zhu, Y. Su, B. Fu, and H. Xu, Mol. Neurobiol. 55, 7118 (2018).

    Google Scholar 

  17. D. Zhu, Y. Su, M.L. Young, J. Ma, Y. Zheng, and L. Tang, ACS Appl. Mater. Interfaces 9, 27453 (2017).

    Google Scholar 

  18. D. Zhu, I. Cockerill, Y. Su, Z. Zhang, J. Fu, K.W. Lee, J. Ma, C. Okpokwasili, L. Tang, Y. Zheng, Y.X. Qin, and Y. Wang, ACS Appl. Mater. Interfaces 11, 6809 (2019).

    Google Scholar 

  19. D. Zhu, J. You, N. Zhao, and H. Xu, Adv. Sci. 6, 1901166 (2019).

    Google Scholar 

  20. Y. Hou, G. Jia, R. Yue, C. Chen, J. Pei, H. Zhang, H. Huang, M. Xiong, and G. Yuan, Mater. Charact. 137, 162 (2018).

    Google Scholar 

  21. A. Krężel and W. Maret, Arch. Biochem. Biophys. 611, 3 (2016).

    Google Scholar 

  22. T. Kambe, T. Tsuji, A. Hashimoto, and N. Itsumura, Physiol. Rev. 95, 749 (2015).

    Google Scholar 

  23. Y. Liu, Y. Zheng, and B. Hayes, Sci. China Mater. 60, 377 (2017).

    Google Scholar 

  24. H. Hermawan, Prog. Biomater. 7, 93 (2018).

    Google Scholar 

  25. M. Yamaguchi, Biomed. Res. Trace Elem. 18, 346 (2007).

    Google Scholar 

  26. J. Ma, N. Zhao, and D. Zhu, Sci. Rep. 6, 26661 (2016).

    Google Scholar 

  27. J. Ma, N. Zhao, and D. Zhu, ACS Biomater. Sci. Eng. 1, 1174 (2015).

    Google Scholar 

  28. D. Zhu, Y. Su, Y. Zheng, B. Fu, L. Tang, and Y.X. Qin, Am. J. Physiol.-Cell Physiol. 314, C404 (2018).

    Google Scholar 

  29. Y. Su, I. Cockerill, Y. Wang, Y.X. Qin, L. Chang, Y. Zheng, and D. Zhu, Trends Biotechnol. 37, 428 (2019).

    Google Scholar 

  30. X. Tong, D. Zhang, X. Zhang, Y. Su, Z. Shi, K. Wang, J. Lin, Y. Li, J. Lin, and C. Wen, Acta Biomater. 82, 197 (2018).

    Google Scholar 

  31. G. Li, H. Yang, Y. Zheng, X.H. Chen, J.A. Yang, D. Zhu, L. Ruan, and K. Takashima, Acta Biomater. 97, 23 (2019).

    Google Scholar 

  32. Y. Su, K. Wang, J. Gao, Y. Yang, Y.-X. Qin, Y. Zheng, and D. Zhu, Acta Biomater. 98, 174 (2019).

    Google Scholar 

  33. Y. Su, S. Champagne, A. Trenggono, R. Tolouei, D. Mantovani, and H. Hermawan, Mater. Des. 148, 124 (2018).

    Google Scholar 

  34. Y. Su, C. Lu, X. Hu, Y. Guo, X. Xun, Z. Zhang, G. Li, J. Lian, and L. Ren, J. Electrochem. Soc. 165, C155 (2018).

    Google Scholar 

  35. Y. Su, D. Li, Y. Su, C. Lu, L. Niu, J. Lian, and G. Li, ACS Biomater. Sci. Eng. 2, 818 (2016).

    Google Scholar 

  36. A. International, NACE/ASTMG31-12a, Standard Guide for Laboratory Immersion Corrosion Testing of Metals (West Conshohocken: ASTM International, 2012).

    Google Scholar 

  37. N. Zhao and D. Zhu, PLoS One 9, e110420 (2014).

    Google Scholar 

  38. ISO 10993‐5:2009 Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity (2009).

  39. ISO 10993‐12:2012 Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials (2012).

  40. N. Zhao, B. Workman, and D. Zhu, Int. J. Mol. Sci. 15, 5263 (2014).

    Google Scholar 

  41. N. Zhao, N. Watson, Z. Xu, Y. Chen, J. Waterman, J. Sankar, and D. Zhu, PLoS One 9, e98674 (2014).

    Google Scholar 

  42. V.R. Fereira, J. Sukumaran, M. Andó, and P.D. Baets, Sustain. Constr. Des. 2, 115 (2011).

    Google Scholar 

  43. J.Y. Park, C.H. Gemmell, and J.E. Davies, Biomaterials 22, 2671 (2001).

    Google Scholar 

  44. C.K. Drinker, K.R. Drinker, and C.C. Lund, Am. J. Physiol. Leg. Content 62, 1 (1922).

    Google Scholar 

  45. J.E. Davies, Anat. Rec. 245, 426 (1996).

    Google Scholar 

  46. J. Cheng, B. Liu, Y.H. Wu, and Y.F. Zheng, J. Mater. Sci. Technol. 29, 619 (2013).

    Google Scholar 

  47. Y. Su, H. Yang, J. Gao, Y.X. Qin, Y. Zheng, and D. Zhu, Adv. Sci. 6, 1900112 (2019).

    Google Scholar 

  48. J. Wang, F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, D. Zhao, J. Meng, Y. Li, W. Li, K. Chan, and L. Qin, Acta Biomater. 21, 237 (2015).

    Google Scholar 

  49. J. Ma, M. Thompson, N. Zhao, and D. Zhu, J. Orthop. Transl. 2, 118 (2014).

    Google Scholar 

  50. J. Ma, N. Zhao, L. Betts, and D. Zhu, J. Mater. Sci. Technol. 32, 815 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank Matthew Carl, Ying Qui, and Baozhuo Zhang for their discussions and contributions to the Project. Benjamin Cloarec acknowledges support for a study-abroad program that was provided by the University of Rouen. This work was performed in part at the University of North Texas’s Material Research Facility: a shared research facility for multi-dimensional fabrication and characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghui Zhu or Marcus L. Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cockerill, I., Su, Y., Bitten, R. et al. Salt Preform Texturing of Absorbable Zn Substrates for Bone-Implant Applications. JOM 72, 1902–1909 (2020). https://doi.org/10.1007/s11837-019-03971-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03971-1

Navigation